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Abstract

In regression discontinuity designs with multiple running variables (MRD), units are assigned
different treatments based on whether their values on several observed running variables exceed
known thresholds. In such designs, applied work commonly analyzes each running variable
separately, estimating a single-dimensional RD design in the first running variable after lim-
iting the sample to the set of individuals qualifying on the second threshold, and vice versa.
In this paper, I propose a new estimator for MRD designs using thin plate splines that im-
proves upon the applied practice in two ways. First, the estimator can be used to estimate
the conditional average treatment effect at every point on the boundary separating treated
and untreated units, and second, it provides efficiency gains by using the entire sample. I also
develop analogous estimators for multidimensional regression kink (MRK) and multidimen-
sional regression discontinuity/kink (MRDK) designs. I establish theoretical properties for
these estimators, before presenting simulation results showing that they perform well in finite
samples. Finally, I demonstrate the performance of my MRD estimator with two empirical
applications: Londoño-Vélez, Rodríguez, and Sánchez (2020) on the effect of financial aid on
college enrollment, and Keele and Titiunik (2015) on the effect of political ads on election
turnout. Open-source software is available for implementing the proposed methods.

Keywords: Regression discontinuity, regression kink, multidimensional regression disconti-
nuity/kink, education policy, voting behavior
Jel Classification: C1, C13, C21, C25.

1 Introduction

The regression discontinuity (RD) design, first introduced by Thistlethwaite and Campbell
(1960), has enjoyed a revival in popularity over the past two decades. As Lee and Lemieux
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(2010) document, the RD design has been used in a wide range of policy evaluations, including
in areas such as education, labor market programs, health, and crime. In RD designs, treat-
ment status is determined by whether observed running variables (also known as assignment
variables) exceed known thresholds. Under the assumption that the location of observations
near this threshold is as-good-as-random, the treatment effect is identified as the difference in
mean outcomes for observations infinitesimally close to either side of the threshold.

In recent years, the proliferation of richer data sets has led to an increase in the number
of papers using RD designs with multiple running variables, which I call multidimensional
RD (MRD) designs.1 For example, Londoño-Vélez, Rodríguez, and Sánchez (2020) studies
the effect of eligibility for a financial aid program in Colombia using an MRD design with
students’ test scores and family wealth as the running variables,2 while Dell (2010) studies the
long-run impacts of a forced mining labor system in Peru and Bolivia leveraging a geographical
discontinuity in conscription rates (with longitude and latitude being the running variables).

However, while estimation of single-dimensional RD designs has been extensively studied,
there is much less work studying estimation for MRD. Given the lack of guidance, most
empirical papers reduce MRDs into single-dimensional RD problems, either analyzing each
running variable separately or combining multiple running variables into one. For instance,
Londoño-Vélez, Rodríguez, and Sánchez (2020) focus on the set of students with low enough
family income and estimate a single-dimensional RD with test score as the running variable
and vice versa, whereas in geographical RD problems researchers often use distance to the
boundary as the running variable.3 While these approaches typically produce valid treatment
effect estimates, they do not fully exploit the richness of the data.

Hence, in this paper I propose a non-parametric MRD estimator which improves upon
the common applied practice in two ways: first, the estimator can be used to estimate the
conditional average treatment effect (CATE) at every point on the boundary separating treated
and untreated units (which I will henceforth refer to as the treatment frontier, and denote by
F), and second, the estimator provides efficiency gains (relative to the practice of analyzing
each running variable separately) by using the entire sample. At a high-level, my approach
involves estimating two conditional expectation functions (CEFs) with respect to the running
variables non-parametrically by fitting two thin plate splines ĝ1(x) and ĝ0(x) over the treated
and untreated regions respectively. The vertical difference between the two splines τ̂(x) =

1MRDs fall under two general categories – cases with dichotomous treatments (the two treatment conditions
being either treatment or control), and those with multiple treatment arms (i.e. more than two mutually
exclusive treatment conditions). Throughout this paper, I will focus my discourse on the case with dichotomous
treatment, but the analysis also extends straightforwardly to the case with multiple treatment arms.

2Kane (2003) uses a very similar empirical strategy to study the effect of the Cal Grant program.
3Dell (2010) provides a rare exception by using longitude and latitude as two separate running variables.

However, due to data limitations, Dell estimates the MRD using global cubic polynomial fits, an approach that
is not recommended in the single-dimensional case (Gelman and Imbens 2019; Cattaneo and Titiunik 2022),
and is likely to perform even worse in multiple dimensions.
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ĝ1(x) − ĝ0(x) at every point x ∈ F is then taken as the estimate of the CATE, τ(x), for
individuals with values of the running variables equal to x. If desired, we can also recover the
average CATE over F (or any subset of F) by integrating with respect to the distribution of
the running variables over F.

Figure 1 shows a practical application of my MRD estimator using data from Londoño-
Vélez, Rodríguez, and Sánchez (2020). In particular, the surfaces show the estimated prob-
ability of college enrollment as a function of the two running variables (test scores and an
inverse wealth index), estimated separately for students with values of the running variables
which make them eligible or ineligible for the program respectively. The vertical gap between
the two surfaces corresponds to my MRD estimate of the CATE, and we observe that the
effect on college enrollment seems to be decreasing in test scores. Section 4 provides more
details and results for this empirical application, and discusses the economic significance of
the treatment effect heterogeneity in this setting.

Figure 1: Probability of College Enrollment as a Function of Test Score and Family Wealth

Notes: The figure shows estimates of the probability of college enrollment as a function of test scores and
an inverse wealth index using data from Londoño-Vélez, Rodríguez, and Sánchez (2020). Probability of college
enrollment was estimated using thin plate regression splines separately for students with test scores and family
wealth meeting the eligibility criteria for financial aid, and for students with test scores and family wealth that
did not meet the eligibility criteria.

The popularity of the RD design also led to the development of a closely related method —
the regression kink (RK) design (Card, Lee, Pei, and Weber 2015) — which is based on changes
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in the derivative of a continuous treatment variable at a threshold, (e.g., when the marginal
tax rate increases as earnings exceed certain levels). While there has been less discussion of
RK designs with multiple running variables (MRK designs), the MRD estimator discussed
above can be easily extended to the MRK setting,4 as well as to multidimensional settings
where there is a discontinuity in one running variable and a kink in the other (MRDK).

Figures 2 and 3 show examples of potential MRDK and MRK designs studying the effect
of UI benefits on job-finding probability, motivated by Louisiana’s UI benefit schedule as
described in Landais (2015). In this setting, weekly UI benefits W is an increasing function
of prior earnings E up to a time-specific threshold Ēt and is constant for higher levels of
earnings, thus inducing the first kink in the figures (at E = Ēt). The threshold for the cap Ēt

is constant during the period t < 0, but changes after that.
Figure 2 considers the scenario where the threshold is abruptly increased at time t = 0

from Ē0 to a much higher threshold Ē1. This leads to a discrete jump in weekly UI benefits
for individuals with earnings above the previous cap who apply at time of the cap raise. This
results in the discontinuity at t = 0 and E ≥ Ē0 seen in Figure 2a, giving rise to an MRDK
design.5 Figure 3 considers instead a case where the threshold is gradually raised after time
t = 0. This results in a second kink in Figure 3a at t = 0 and E ≥ Ē0, thus leading to an
MRK design.

If there is a causal relationship between UI benefits and job-finding probability, these
discontinuities/kinks in the benefit schedule will result in similar discontinuities/kinks in job-
finding probability. The MRDK and MRK estimands are then given by the ratio of the
discontinuity/kink for job-finding shown in Figures 2b and 3b (which assume a negative causal
relationship) to the discontinuity/kink for benefits (seen in Figures 2a and 3a). A more detailed
description of the UI benefits schedule that give rise to these MRDK and MRK designs is given
in Section 2.3.

4Essentially, the only additional step to estimating an MRK design compared to the procedure for a fuzzy
MRD design is to take the derivatives of the estimated surfaces.

5In reality, this may give rise to incentives for individuals to delay the start date of their claims until after
t0. On the other hand, if eligibility for the higher cap is based on individuals’ age at time t0 (rather than being
introduced for all individuals at t0), then we can use age (at t0) as the running variable instead of time, which
may ameliorate concerns over manipulation of UI start dates.
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Figure 2: Example of an MRDK Design

(a) Weekly UI Benefits (b) Job-Finding Probability

Notes: Panels A and B show the conditional expectation functions of weekly UI benefits and job-finding
probability respectively as functions of prior earnings and time.

Figure 3: Example of an MRK Design

(a) Weekly UI Benefits (b) Job-Finding Probability

Notes: Panels A and B show the conditional expectation functions of weekly UI benefits and job-finding
probability respectively as functions of prior earnings and time.

While there are no papers (to the best of my knowledge) that propose an estimator for
MRK designs and study its theoretical properties, there are a few papers studying MRD esti-
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mation. Closest in spirit to this paper is Zajonc (2012), who proposes a non-parametric MRD
estimator based on local linear regressions. While local linear regressions (or more generally,
local polynomial regressions) are popular for single-dimensional RD estimation due to their
attractive boundary properties, they are more difficult to implement in multiple dimensions,
and I instead consider MRD estimation using thin plate splines due to its simplicity.

In particular, to control the flexibility of thin plate splines, one only has to choose a
scalar penalty parameter λ, and only a single estimation procedure is required to estimate
the CATE along the entire treatment frontier F. The ease of thin plate spline estimation
allows me to implement a simple undersmoothing procedure to obtain asymptotically valid
confidence intervals (CIs) for my estimators,6 and to construct simultaneous confidence bands
for the CATE function. By contrast, for multidimensional local linear regressions, the choice
of a continuum of bandwidths for each x ∈ F is required,7 and the estimation procedure needs
to be repeated separately for each x ∈ F in order to estimate the CATE at that point.8

An alternative approach to MRD estimation which does not involve estimating CEFs of the
potential outcome functions is given in Imbens and Wager (2018). Instead, they use convex
numerical optimization to obtain a finite-sample-minimax linear estimator of the treatment
effect subject to bounds on the second derivative of the CEF locally (for RD designs with either
a single or multiple running variables). This is similar in spirit to methods in Armstrong and
Kolesár (2018), and Kolesár and Rothe (2018), and requires the user to assume a reasonable
bound for the curvature of an unknown function.

This paper fits more broadly into a vast literature on RD designs, excellent reviews of
which can be found in Lee and Lemieux (2010), Cattaneo and Titiunik (2022), and Cattaneo,
Idrobo, and Titiunik (2023). While there are fewer papers on MRD designs, several studies
consider related settings: for example, Keele and Titiunik (2015), and Cattaneo, Titiunik,
Vazquez-Bare, and Keele (2016) consider RD designs with a single running variable but multi-
ple cutoffs,9 while van Dijcke and Gunsilius (2023) study methods for MRD settings where the
treatment frontier F is unknown. In addition, Abdulkadiroglu, Angrist, Narita, and Pathak

6Calonico, Cattaneo, and Titiunik (2014) derive asymptotically valid CIs for single-dimensional RD through
bias correction (while accounting for the variance of the bias estimate). However, multidimensional extensions
of these formulae may be complex and challenging to implement without very large data sets. There are also
ad hoc methods for undersmoothing such as dividing the MSE-optimal bandwidth by half (Hall 2012) or using
the minimum of the continuum of MSE-optimal bandwidths estimated along the treatment frontier (Zajonc
2012), but these methods are not theoretically justified.

7Methods for estimating a continuum of MSE-optimal bandwidths for multidimensional local linear regres-
sions include Zajonc (2012), who essentially extends Imbens and Kalyanaraman’s (2012) method for choosing
MSE-optimal bandwidths for single-dimensional RDs to multiple dimensions, as well as a cross-validation
method proposed by Papay, Willett and Murnane (2011).

8Perhaps reflecting the difficulty of estimating a continuum of optimal bandwidths in the multidimensional
setting, in one of the few empirical papers to estimate MRD using local linear regressions, Snider and Williams
(2015) choose the bandwidth in an ad hoc manner.

9Empirical settings where such methods may be used include Angrist and Lavy (1999), Angrist, Lavy,
Leder-Luis, and Shany (2019), and Finkelstein, Hendren, and Shepard (2019).
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(2022) consider a market design setting with many running variables and many cutoffs, and
develop a method to estimate an average of the local average treatment effects across all cutoffs
by combining RD with a local propensity score approach.

The rest of this paper proceeds as follows. Section 2 presents theoretical results on estima-
tion and inference for my estimators, and section 3 evaluates their finite-sample performance
through a simulation study. Section 4 shows my MRD estimator in action based on two
empirical applications, and section 5 concludes.

2 Theory

In this section, I start by discussing identification and estimation for sharp and fuzzy MRD
designs, before moving on to MRDK and MRK designs. In addition, I briefly discuss issues
related to practical uses, interpretation, and implementation for these methods.

2.1 Sharp MRD Designs

In a canonical MRD design, there is a vector of running variables Xi ∈ Rd (also known
as assignment variables) which determines the treatment that individual i is assigned to,
Zi ∈ {0, 1}. The treatment that i actually takes up is denoted by Wi ∈ {0, 1}, and in this
subsection we will focus on the case where all individuals comply with the treatment they are
assigned to (i.e., Wi = Zi), which is also known as a sharp MRD design. The scenario where
Wi ̸= Zi for some individuals is known as a fuzzy MRD design, and will be discussed in the
next subsection.

Writing treatment assignment as a function of the running variables, Zi = Z(Xi), we can
denote regions in the running variable space corresponding to different treatment assignments
by Ω1 ≡ {x ∈ Rd|Z(x) = 1}, and Ω0 ≡ {x ∈ Rd|Z(x) = 0}. In addition, I will call the
boundary separating Ω1 and Ω0 the treatment frontier, and denote it by F. In many cases of
interest, treatment is assigned based on whether each of the d running variables exceed their
respective thresholds (assumed to be zero here without loss of generality):10

Zi =

d∏
k=1

I [Xki ≥ 0] , (1)

10While I have described treatment assignment as determined by an “AND” condition here, this is without
loss of generality in the sense that cases where the treatment is assigned by an “OR” condition (and/or one
or both of the running variables have to fall below the threshold) can be transformed into the formulation
above by appropriately redefining the treatment (and/or switching the sign(s) of the running variable(s)).
There are certain cases where treatment assignment cannot be easily transformed into this formulation such as
geographical RD settings, but the estimators proposed in this paper can typically still be applied by estimating
two or more thin plate splines, and taking their difference at the boundary.
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in which case, we have

Ω1 = {x ∈ Rd|
d∏

k=1

I [xk ≥ 0] = 1}, Ω0 = {x ∈ Rd|
d∏

k=1

I [xk ≥ 0] = 0},

F =
{
x ∈ Rd|xk = 0 for some k, and xj ≥ 0 ∀j ̸= k

}
.

Throughout this paper, I also assume that Xi has a strictly positive density in a neighborhood
of every point x ∈ F.

Denote the potential outcome for individual i in a world where she receives treatment w

by Yi(w), and let Bz
ϵ (x) ≡ Bϵ(x) ∩ Ωz where Bϵ(x) is the open ball of radius ϵ centered at x.

The key identifying assumption for sharp MRD designs is as follows.
Assumption 1 . (Continuity of Mean Potential Outcomes) For all x ∈ F and w ∈ {0, 1}:

lim
ϵ→0

E
[
Yi(w)|Xi = x′, x′ ∈ B1

ϵ (x)
]
= lim

ϵ′→0
E
[
Yi(w)|Xi = x′, x′ ∈ B0

ϵ′(x)
]
. (2)

Under Assumption 1, the CATE τ(x) at each x ∈ F is identified and is given by the
difference between two limits of the conditional expectation function (CEF): the limit along a
sequence in the treated region minus the limit along a sequence in the untreated region:

τ(x) ≡ E [Yi(1)− Yi(0)|Xi = x]

= lim
ϵ→0

E
[
Yi(1)|Xi = x′, x′ ∈ B1

ϵ (x)
]
− lim

ϵ′→0
E
[
Yi(0)|Xi = x′, x′ ∈ B0

ϵ′(x)
]

= lim
ϵ→0

E
[
Yi|Xi = x′, x′ ∈ B1

ϵ (x)
]
− lim

ϵ′→0
E
[
Yi|Xi = x′, x′ ∈ B0

ϵ′(x)
]

(3)

Equation (3) suggests a natural way to estimate the treatment effect: one can simply estimate
the CEFs g1(x) ≡ E[Yi(1)|Xi = x] using Xi ∈ Ω1 and g0(x) ≡ E[Yi(0)|Xi = x] using Xi ∈ Ω0,
and take the difference τ̂(x) = ĝ1(x) − ĝ0(x) as the CATE estimate at any x ∈ F. If desired,
one can also recover the average treatment effect over any subset of the F by integrating with
respect to the distribution of Xi. Note that this estimation approach also extends straightfor-
wardly to the case with more than two treatment arms, where individuals in (the more than
two) different regions of the running variable space are assigned to different treatments.11

This estimation approach offers two advantages over the common empirical practice of
analyzing each running variable separately. First, it allows us to estimate heterogeneous treat-
ment effects τ(x) for x ∈ F, and in many cases this can give rise to economically meaningful
insights.12 Second, this approach yields more precise estimates by using all of the data si-

11In this case, one can estimate the CEF over each region of the running variable space, and take the
difference between the estimated CEFs at the boundaries separating the different regions to obtain an estimate
of the relative effects between two different treatments.

12Estimating a single-dimensional RD separately for each running variable will instead only give us estimates
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multaneously. By contrast, when reducing the MRD to a single-dimensional RD, for each
estimation we are discarding a substantial fraction of observations.13

My choice of estimator for the CEFs g1(x) and g0(x) is motivated by several goals. First, the
treatment effect estimates should not depend heavily on points far away from the treatment
frontier F (Gelman and Imbens 2019; Cattaneo and Titiunik 2022). Second, the estimator
should be regularized in order to avoid overfitting the data. Third, the estimator should be
computationally tractable: ideally, implementation should not require estimation of a large
number of nuisance parameters.

With these objectives in mind, I estimate the CEFs using a type of non-parametric esti-
mator known as thin plate splines (Duchon 1977), given that its flexibility is regularized by a
scalar penalty term λ, an MSE-optimal choice of which can be easily computed (Golub, Heath,
and Wahba 1979). In the following, I give a brief definition of thin plate splines; see Appendix
section A for more details.

For notational purposes, I use superscript/subscript z ∈ {0, 1} to denote parameters and
quantities for observations that lie in the region of the running variable space Ωz in which
observations are assigned treatment Zi = z: for example, n1 and n0 denote the number of
observations in Ω1 and Ω0 respectively. Assume that Ωz is an open bounded subset of Rd, and
consider the Sobolev space of functions:

Hm(Ωz) =

u ∈ D ′(Ωz) :

∫
Ω

∑
|α|≤m

|Dαu|2 < ∞

 ,

where D ′(Ωz) is the space of Schwartz distributions, and:

Dαu ≡ ∂|α|

∂xα1
1 ...∂xαd

d

u,

where α = (α1, ..., αd)
′ is a multi-index, |α| ≡ |α1| + ... + |αd|, and 2m > d.14 Suppose that

gz(x) are functions in Hm(Ωz) for z ∈ {0, 1}, and let us write:

yzi = gz(x
z
i ) + ϵzi ,

for i = 1, ..., nz. Assume also that ϵzi are i.i.d. random variables that are conditionally
independent of xzi with mean zero and variance ν2z , and that ϵ1i ⊥ ϵ0i′ for all i and i′. The thin

of
∫
x∈Fk

τ(x)dFFk (x), where Fk ≡ {x ∈ Rd|xk = 0, xj ≥ 0 ∀j ̸= k}.
13Specifically, assuming that observations are distributed uniformly over the running variable space and that

the running variable space is a hypercube, for each estimation we will be discarding 2−(d−1) of the data.
14To be more precise, elements in uz ∈ Hm(Ωz) are equivalence classes of functions, [uz], since one can

always redefine a function in the space up to a set of measure zero without affecting the norm.
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plate spline of order m and penalty parameter λz > 0 is defined by :

ĝz = argminu∈Ωz

nz∑
i=1

(yzi − u(xzi ))
2 + λzJ

z
md(u),

where the penalty Jz
md(u) is given by:

Jz
md(u) ≡

∫
Ωz

∑
|α|≤m

|Dαu|2dx.

Next, I introduce some regularity conditions required for my theoretical results.15

Definition. (Adams and Fournier 2001) Ωz satisfies the uniform cone condition if there exists
a locally finite open cover {U z

j } of the boundary of Ωz and a corresponding sequence {Cz
j } of

finite cones, each congruent to some fixed finite cone Cz, such that:

1. There exists Mz < ∞ such that every U z
j has diameter less than Mz.

2. Ωz
δ ⊂ ∪∞

j=1U
z
j for some δ > 0 where Ωz

δ is the set of points in Ωr with distance less than
δ from the boundary of Ωz.

3. Qz
j ≡ ∪xz∈Ωz∩Uz

j
(xz + Cj) ⊂ Ωz for every j.

4. For some finite R̄z, every collection of R̄z + 1 of the sets Qz
j has empty intersection.

Condition F. Suppose that there exists CDFs F z on Ωz defined such that:

lim
nz→∞

sup
x∈Ωz

|F z(x)− F z
nz
(x)| = 0,

where F z
nz
(t) is the distribution that assigns mass n−1

z to all points in Ωz, and that the limiting
distribution F z has density fz ∈ C∞(Ω̄) with respect to the Lebesgue measure in Ωz such
that for all xz ∈ Ωz, we have:

0 < αz
1 ≤ fz(xz) ≤ αz

2.

Definition. We say that a sequence {T z
nz
} is quasi-uniform if there exists a constant Bz > 0

such that for each nz, we have hzmax(T
z
nz
)/hzmin(T

z
nz
) ≤ Bz, where:

hzmax(T
z
nz
) ≡ sup

x∈Ωz

inf
i=1,...,nr

|x− xzi |,

hzmin(T
z
nz
) ≡ min

i ̸=j
|xzi − xzj |.

15An alternative set of regularity conditions can in principle be derived using functional Bahadur represen-
tation, by generalizing the analysis in Shang and Cheng (2013) for single-dimensional smoothing splines to
multivariate thin plate splines.
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Heuristically, the uniform cone condition places some restrictions on the smoothness of the
boundaries Ωz, while condition F ensures that xzi are sufficiently spread out over Ωz, in the
sense that the quasi-uniform condition holds with high probability. Also, throughout this
paper we consider asymptotics where n1/n0 = O(1).

The following theorem tells us that if the penalty parameter goes to zero at an appropriate
rate, the estimate τ̂(x) is consistent and asymptotically Gaussian.

Theorem 1. Let Ωz be open bounded subsets of Rd satisfying the uniform cone condition and
having a Lipschitz boundary, and suppose that condition F and Assumption 1 are satisfied.
In addition, assume that the penalty parameters λz are chosen such that λz → 0 and λ−1

z =

o(n
2m/d
z ). Then, for each x ∈ F, as n0 → ∞, and n1 → ∞,

1. τ̂(x) →p τ(x).

2.
√
nλd/2m (τ̂(x)− τ(x)) →d N

(
b(x), σ2(x)

)
for some constants b(x) and σ2(x).

All proofs are shown in Appendix section E.
In practice, we still need a finite-sample method for choosing λz. A common method of

choosing the penalty parameter is generalized cross-validation (GCV), which is a modification
of leave-one-out cross-validation (LOOCV) with two advantages: first, GCV is less computa-
tionally expensive than LOOCV, and second, it is invariant to rotation of the outcome vector
and basis matrix. This procedure minimizes the GCV score, which is defined by:

GCV (λz) =
nz||yz −A(λz)||2

[nz − tr(A(λz))]
2 ,

where A(λz) denotes the influence matrix for the model fit using λz (see Appendix section A
for a formula for the influence matrix). The following proposition shows that the optimal rate
of convergence is achieved if λz is chosen via GCV.

Proposition 2. Let Ωz be open bounded subsets of Rd satisfying the uniform cone condition
and having a Lipschitz boundary, and suppose that condition F and Assumption 1 are satisfied.
For each x ∈ F, the optimal rate of convergence of τ̂(x) for τ(x) is given by O(n

−2m/(2m+d)
z ),

and this rate is achieved if we set λz = O(n
−2m/(2m+d)
z ), or choose λz using GCV.

Turning next to inference, I start by showing that it is straightforward to compute Bayesian
standard errors for τ̂(x), before showing that they also have a frequentist interpretation. Note
that the thin plate spline estimates ĝz can be written in the form:

ĝz(x) =

Kz∑
k=1

β̂z,ksz,k(x),
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where sz,k(x), is the kth basis function for the thin plate spline estimate, and β̂z,k are the
estimates of the coefficients on these Kz basis functions, where typically, Kz = O(nz). With
the appropriate choice of prior (Wahba 1990; Wood 2006) one obtains a Gaussian posterior
distribution on β̂z,k, with covariance matrix which I denote by Σ̂z. Since the treatment effect
estimate τ̂(x) is linear in β̂z, this implies that the posterior distribution of τ̂(x) is also Gaussian.
It is natural then to consider Bayesian confidence sets of the form:

C(τ̂(x), ŝe(τ̂(x)), 1− α) ≡
[
τ̂(x)− q1−α/2 · ŝe (τ̂(x)) , τ̂(x) + q1−α/2 · ŝe (τ̂(x))

]
, (4)

where q1−α/2 denotes (1− α/2)th quantile of a standard Gaussian distribution, and ŝe is the
estimate of the standard error computed using the posterior distribution of (β̂′

0, β̂
′
1)

′.
However, there are still a couple of concerns about these confidence sets. First, one may

worry about the dependency on our choice of priors, i.e., that there may not be a frequentist
interpretation of these inference results.16,17 Second, even if we have correct standard errors,
we need to ensure that the asymptotic distribution of the CATE estimate is centered at the
truth (i.e., that b = 0 in Theorem 1), and typically the MSE-optimal choice of λz (e.g., as
described in Proposition 2) does not guarantee this. Nonetheless, the next theorem shows that
with appropriate undersmoothing, the Bayesian confidence set has a frequentist interpretation.

Theorem 3. Let Ωz be open bounded subsets of Rd satisfying the uniform cone condition
and having a Lipschitz boundary, In addition, suppose that condition F and Assumption 1 are
satisfied, and that the penalty parameters λz are chosen such that λz = o(n

−2m/(2m+d)
z ) and

λ−1
z = o(n

2m/d
z ). Then, denoting the (1−α)th quantile of a standard Gaussian distribution by

q1−α/2, the Bayesian confidence set in equation (4) has coverage rate 1− α asymptotically:

Pr (τ(x) ∈ C(τ̂(x), ŝe(τ̂(x)), 1− α)) → 1− α,

as n0 → ∞, n1 → ∞.

In order to apply the previous theorem, we need a way to implement undersmoothing.18

The next proposition shows that one can obtain a penalty parameter that satisfies the rate
condition by using the GCV choice of λz from a thin plate spline of higher penalty order.
The intuition is similar to the result in local polynomial regressions, where the asymptotic

16The Bernstein-von Mises theorem as described in van der Vaart (2000) does not directly apply here,
given that the results typically do not hold for infinite-dimensional statistical models such as non-parametric
regression without further restrictions (Freedman 1999).

17Nychka (1988), and Marra and Wood (2011) show that in the case of thin plate splines, under regularity
conditions, the Bayesian confidence sets described above have the frequentist property that they have close to
nominal “across-the-function” (ACF) coverage. However, this does not tell us whether the Bayesian confidence
set has nominal coverage for the CATE at any given point x ∈ F.

18A commonly used method in practice is to simply divide the penalty parameter by two (Hall 1992). While
the resulting sequence of λz does not satisfy the asymptotic rate condition, one might view this as a reasonable
finite-sample approximation.
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bias of the local quadratic regression estimate vanishes if one chooses the bandwidth using the
MSE-optimal bandwidth for local linear regression (Fan and Gibjels 1992; Calonico, Cattaneo,
and Titiunik 2014).19,20

Proposition 4. Let Ωz be open bounded subsets of Rd satisfying the uniform cone condition
and having a Lipschitz boundary. In addition, suppose that gz ∈ Hm+1(Ωz) for z = 0, 1, and
denote the penalty parameter chosen using GCV when the penalty order of the thin plate spline
is m by λ̂GCV

m,z , and similarly, denote the estimated CEFs under penalty order m with penalty
parameter λz by ĝm,z(x;λz). Then, we have:

Pr (τ(x) ∈ C(τ̂m(x), ŝe(τ̂m(x)), 1− α)) → 1− α,

where τ̂m(x) ≡ ĝm,1(x; λ̂
GCV
m+1,1)− ĝm,0(x; λ̂

GCV
m+1,0).

In addition to pointwise confidence intervals, we may also be interested in obtaining si-
multaneous confidence bands for the entire CATE function {τ(x)}x∈F, which allow us to test
a number hypotheses about the CATE function, including:

• H0 : τ(x) = 0 for all x ∈ F.

• H0 : τ(x) = τ̄ for all x ∈ F, for some constant τ̄ .

• H0 : τ(x) is a linear function of x, for x ∈ F.

In order to obtain simultaneous confidence bands, we can simulate the maximum of a Gaussian
process using the following procedure.

1. Consider a fine grid for the running variables {xg}g∈G over the treatment frontier F, and
let x⃗g be the |G| × d matrix with gth row equal to xg.

19Intuitively, for larger penalty order m, the MSE-optimal penalty term goes to zero at a faster rate. So, if
we use the MSE-optimal penalty choice λ̂GCV

m+1,z for thin plate splines of a higher order (m+ 1) than the order
of the thin plate spline that we are ultimately fitting for the CEFs (m), the asymptotic bias in the estimator
vanishes. The reason that λ̂GCV

m+1,z goes to zero at a faster rate than λ̂GCV
m,z is that for a given λz, ĝm+1,z(x;λz)

will be smoother than ĝm,z(x;λz) since derivatives of order m+1 are also being penalized in the former. Hence,
in order to “correct” for the fact that ĝm+1,z(x;λz) is smoother, the MSE-optimal λz for ĝm+1,z(x;λz) should
be smaller. Another way to understand this is to note that the MSE-optimal λz is chosen so that the squared
bias and variance terms in the MSE tend to zero at the same rate (otherwise, the MSE will tend to zero at
the slower of the two rates). As m increases, the variance term increases at a slower rate as a function of λz

as λz tends to zero, whereas the bias term remains linear in λz. Hence, in order to balance the rate at which
the bias and variance tend to zero as m increases, λz needs to tend to zero at a faster rate.

20A less-used procedure for choosing the smoothing parameter is via generalized maximum likelihood (GML),
which can be motivated from a Bayesian framework. Wahba (1985) shows that in the case of single-dimensional
smoothing splines, under regularity conditions, λz chosen via GML tend to zero at a faster rate than the MSE-
optimal rate. If the same holds true for multivariate thin plate splines, then we can implement undersmoothing
by choosing λz via GML.

13



2. We can compute the covariance matrix of {τ̂(xg)}g∈G using:

V̂ ({τ̂(xg)}g∈G) = s1(xg)Σ̂1s1(xg)
′ + s0(xg)Σ̂0s0(xg)

′,

where sz(xg) is the |G| ×Kz matrix where the (g, k)th element is equal to sz,k(xg). The

standard error estimate of τ̂(xg) is given by ŝe(τ̂(xg)) =
√
V̂ ({τ̂(xg)}g∈G)gg.

3. For b = 1, ..., B:

(a) Take a draw {β∗(b)
(z),k}

Kz
k=1 from the posterior distribution of {β̂(b)

(z),k}
Kz
k=1, and compute

the treatment effect estimate τ∗(b)(xg) based on these simulated parameters at each
point xg, g ∈ G:

τ∗(b)(xg) =

Kz∑
k=1

β
∗(b)
z,k sz,k(xg).

(b) Denote the standardized difference between the simulated and estimated treatment
effects by:

t∗(b)(xg) =
τ∗(b)(xg)− τ̂(xg)

ŝe(τ̂(xg))
,

for each xg, g ∈ G.

4. We can then take the critical value c̄ to be the (1−α)th percentile of {maxg∈G |t∗(b)(xg)|}Bb=1.

See Appendix section B for details on how to test various null hypotheses about the CATE
using simultaneous confidence bands.

In certain settings, we may want to account for heteroscedasticity or cluster our standard
errors. To do so, we can formulate the estimation of τ(x) as a ridge regression problem.
Specifically, we will write:

yi = Xi(x)
′β(x) + ui,

where:

Xi(x) ≡



1

Wi

Zi · s1,2(xi − x)
...

Zi · s1,K1(xi − x)

(1− Zi) · s0,2(xi − x)
...

(1− Zi) · s0,K0(xi − x)


∈ RK1+K0 (5)

where I omit the constant terms s1,1(·) = s2,1(·) = 1 from the basis functions.
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Let X(x) be the design matrix, and observe that typically, K1 = n1 +M , K0 = n0 +M ,

and M =

(
m+ d− 1

d

)
, so X(x)′X(x) does not have full rank. Hence, we consider the

minimization problem:

min
b

n∑
i=1

(yi −X(x)′ib)
2 + (λ1/2 ∗ b)′Mx(λ)(λ

1/2 ∗ b),

where λ1/2 ≡ (0,
√
λ1ι

′
n1
,
√
λ0ι

′
n0
)′, the symbol ∗ denotes element-wise multiplication, and ιnz

is a vector of ones that is of length nz.21 This is equivalent to fitting two thin plate splines
over Ω1 and Ω0 respectively based on translated coordinates, with x now being the origin.
Moreover, the second element of the solution vector is equal to the thin plate spline estimate
of τ̂(x), considering that the spline basis functions (other than the constant) all vanish at zero
(under suitably chosen basis functions).

The solution to the minimization problem is given by:

β̂(x) = (X(x)′X(x) +Mx(λ))
−1X(x)′Y.

From this, we obtain the familiar “sandwich” formula for the conditional variance estimate:

ˆV ar(β̂(x)|X(x)) = (X(x)′X(x) +Mx(λ))
−1X(x)′Ω̂(x)X(x)(X(x)′X(x) +Mx(λ))

−1,

where Ω̂(x) is an estimate of the covariance matrix for the residuals. In the case of het-
eroscedasticity, we can estimate Ω̂(x) using the diagonal matrix with the squared residuals
on the diagonal, or alternatively in the case of clustering, we may compute the Liang-Zeger

standard errors. We can then take
√

ˆV ar(β̂(x)|X(x))2,2 as our estimate of the standard error
of τ̂(x).

Finally, we may also conduct inference using nonparametric bootstrap, which allows us
to obtain pointwise confidence intervals as well as simultaneous confidence bands. Moreover,
the bootstrap procedure can be modified to accommodate different assumptions about the
covariance structure for the error terms (e.g., cluster bootstrap for cluster-robust standard
errors).22

21The precise definition of Mx(λ) is given in Appendix section C.
22Here, I give an informal argument for why bootstrap may be theoretically justified in this setting. Invoking

the interpretation of the thin plate spline as a Gaussian process, we use Theorem 2.4 from Giné and Zinn (1990)
on the bootstrapping of general empirical measures. We observe that the main conditions of the theorem are
satisfied: for part (a) we have

∫
supu∈Hm+1(Ωz)

|u − Pu|2dP < ∞, and for part (b), we use the result from
Marcus (1985) which shows that the unit ball of a Sobolev space with 2m > d is a Donsker class for any P . To
complete the argument, one must verify or assume that Hm+1(Ωz) satisfies certain measurability conditions
with respect to P ,å spelled out in detail in Giné and Zinn (1984).
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2.2 Fuzzy MRD Designs

Next, I study fuzzy MRD designs, where the jump in treatment probability at the treatment
frontier is less than one. I denote the potential treatment of an individual i if she is assigned
treatment z by Wi(z). I also make several additional assumptions for the fuzzy MRD design.
Assumption 2. (Continuity of Mean Potential Treatments) For all x ∈ F and z ∈ {0, 1}:

lim
ϵ→0

E
[
Wi(z)|Xi = x′, x′ ∈ B1

ϵ (x)
]
= lim

ϵ′→0
E
[
Wi(z)|Xi = x′, x′ ∈ B0

ϵ′(x)
]
. (6)

Assumption 3. (First Stage) There exists a positive constant δ > 0 such that:
lim
ϵ→0

E
[
Wi|Xi = x′, x′ ∈ B1

ϵ (x)
]
− lim

ϵ′→0
E
[
Wi|Xi = x′, x′ ∈ B0

ϵ′(x)
]
≥ δ, (7)

for all x ∈ F.
Assumption 4. (Monotonicity) Wi(1) ≥ Wi(0) almost surely.

Under Assumptions 1–4, the conditional local average treatment effect (CLATE), τFMRD(x)

for x ∈ F is identified (Imbens and Angrist 1994; Hahn, Todd, and Van der Klaauw 2001),
and is given by:

τFMRD(x) ≡ E [Yi(1)− Yi(0)|Xi = x,Wi(1) > Wi(0)]

=
limϵ→0 E

[
Yi|Xi = x′, x′ ∈ B1

ϵ (x)
]
− limϵ′→0 E

[
Yi|Xi = x′, x′ ∈ B0

ϵ′(x)
]

limϵ′′→0 E
[
Wi|Xi = x′, x′ ∈ B1

ϵ′′(x)
]
− limϵ′′′→0 E

[
Wi|Xi = x′, x′ ∈ B0

ϵ′′′(x)
] .
(8)

The numerator of this Wald ratio can be estimated in the same manner as for sharp MRD, and
the only difference for the denominator is that Wi replaces Yi as the left-hand side variable.

Let us denote hz(x) ≡ E[Wi(z)|Xi = x], and write the difference between two functions
uz as ∆u ≡ u1 − u0. The following proposition describes properties of the thin plate spline
estimator of the CLATE in a fuzzy MRD design.

Proposition 5. Let Ωz be open bounded subsets of Rd satisfying the uniform cone condition
and having a Lipschitz boundary, and suppose that condition F and Assumptions 1–4 are
satisfied. Also, assume that the penalty parameters λz and λh

z for the thin plate spline estimates
ĝz and ĥz of gz and hz respectively are chosen such that λz = o(1), λh

z = o(1), λ−1
z = O(n

2m/d
z ),

(λh
z )

−1 = O(n
2m/d
z ). Then, for all x ∈ F,

τ̂FMRD(x) ≡ ∆ĝ(x)/∆ĥ(x) →p τFMRD(x),

as n0 → ∞ and n1 → ∞.

One can compute standard errors for τ̂FMRD(x) using nonparametric bootstrap. Alterna-
tively, we can may obtain standard error estimates by formulating τ̂FMRD(x) as the solution
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to a 2SLS ridge problem. I give a brief overview here, and discuss details in Appendix section
C. For any x ∈ F, consider the same setup as for the ridge formulation for sharp MRD:

yi = X(x)′iβ(x) + ui,

except that here, we instrument X(x)i with Z(x)i, defined as:

Z(x)i ≡



1

Zi

Zi · s1,1(xi − x)
...

Zi · s1,K1(xi − x)

(1− Zi) · s0,1(xi − x)
...

(1− Zi) · s0,K0(xi − x)


∈ RK1+K0 . (9)

Defining Z(x) as the “design matrix” but with Z(x)i as the regressor, and suppressing the
dependence of terms on x for notational simplicity, we can write the solution to this 2SLS
ridge problem as β̂2SLS = QY, where:

Q ≡ (X′Z(Z′Z+M(λh))
−1Z′Z(Z′Z+M(λh))

−1Z′X+M(λ))−1X′Z(Z′Z+M(λh))
−1Z′,

and λ and λh are vectors representing the penalty terms for the thin plate splines in the
numerator and denominator respectively. An estimate of the conditional variance of β̂2SLS is
given by:

ˆV ar(β̂2SLS |Z,X) = QΩ̂Q′.

where we can use different estimators of Ω̂ depending on whether we assume heteroscedasticity
or if we want clustered standard errors. Considering that τ̂FMRD(x) is given by the second

element of β̂2SLS , we can take
√

ˆV ar(β̂2SLS |Z,X)2,2 as our estimate of the standard error of
τ̂FMRD(x).

2.3 MRK and MRDK Designs

Our MRD estimation approach can easily be extended to MRDK and MRK designs. Before
discussing identification and estimation, I provide a motivating example of these designs based
on the unemployment insurance (UI) system in Louisiana (Landais 2015). Here, we are in-
terested in estimating the causal effect of weekly UI benefits Wi on employment outcomes Yi.
The benefit amount Wi is a linear function of prior earnings Ei up to a time-specific threshold
Ēt and is constant for higher levels of earnings. This threshold is constant during the period
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t < t0, but changes after t0.
First, consider the case where the threshold increases discretely at time t0 from Ē0 to a

much higher threshold Ē1. We can write the formula for benefits as:

Wi = W(Xi) = W(Ei, ti) =



αEi Ei ≤ Ē0, ti < 0,

αĒ0 Ei > Ē0, ti < 0,

αEi Ei ≤ Ē1, ti ≥ 0,

αĒ1 Ei > Ē1, ti ≥ 0.

This is illustrated graphically in Figure 4a, where the solid and dashed lines represent the
benefit formula prior to and after t = 0 respectively, as well as in Figure 2a, which plots
benefits as a function of prior earnings and time. Figure 2a shows that individuals applying
for UI before t = 0 face a kink in the benefit amount as prior earnings cross the threshold
Ē0, whereas individuals with prior earnings falling between Ē0 and Ē1 face a discontinuity in
benefits amount depending on whether they apply before or after t = 0.23 Hence, we have an
MRDK design, with a discontinuity on one dimension, and a kink on the other.

Next, as an example of an MRK design, suppose that instead of a large discrete increase
in the cap at t = 0, the cap is increased gradually after that, as shown in Figure 4b. This UI
benefit formula can be written as:

Wi = W(Xi) = W(Ei, ti) =



αEi Ei ≤ Ē0, ti < t0,

αĒ0 Ei > Ē0, ti < t0,

αEi Ei ≤ Ēti , ti ≥ t0,

αĒti Ei > Ēti , ti ≥ t0,

Ēti = Ē0 + γti,

and is also shown graphically in Figure 3a, which plots UI benefits as a function of the two
running variables. We observe that similar to the MRDK example, there is a kink in the
benefit amount as prior earnings cross the threshold Ē0 for individuals applying for UI before
t = 0. However, individuals with prior earnings falling between Ē0 and Ē1 now face a kink
instead of a discontinuity at t = 0. In addition, there is another a kink for individuals applying
for UI after t = 0 when their earnings cross threshold Ēti .

The description so far assumes that the benefit amount Wi is a deterministic function
of Xi, which corresponds to a sharp design. However, it is often the case that the benefits
formula may depend on variables unavailable in the data in addition to the running variables
(e.g., marital status and number of dependents), so the simplified formula we are forced to
rely on may be incorrect for some individuals. In this case, we have a fuzzy MRDK/MRK

23There is also another kink for individuals applying for UI after t = 0 as their earnings cross the threshold
Ē1, but this kink is outside the range of Figure 2a.
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design, where Wi|Xi = x is a random variable.
Under assumptions about the smoothness of the potential outcome functions, if there is a

causal relationship between the treatment variable (UI benefits) and the outcome variable (em-
ployment outcome), we might expect to see kinks/discontinuities in the CEF of the outcome
variable at the same points in the running variable space. I illustrate this in Figures 2b and
3b by plotting the (CEFs of) job-finding probability as a function of the running variables,
assuming that there is a negative causal relationship between UI benefits and employment
outcomes. The MRDK/MRK estimand is given by the ratio of the kink/discontinuity of the
outcome variable to the kink/discontinuity of the treatment variable at the same point in
running variable space.

In order to estimate the MRDK/MRK CATE, we need to fit separate thin plate splines
for different sets of individuals, similar to MRD estimation. However, instead of splitting the
sample based on assigned treatment (as in the MRD case), in the MRDK/MRK examples
here, we split the sample based on whether individuals are subject to the cap. Regions of
the running variable space corresponding to individuals with benefit amounts that are either
subject to or not subject to the cap are shown in Appendix Figure A.1 for the examples here.

Figure 4: UI Benefit Schedules Leading to MRDK and MRK Designs
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Notes: Panels A and B show the unemployment insurance (UI) weekly benefits described in the MRDK and
MRK examples respectively in the main text, as functions of prior earnings. The benefit formula in the period
before t = 0 is shown using solid lines, whereas the benefit formula occuring after t = 0 is shown using dashed
lines.

Next, I discuss assumptions required for identification of MRK designs. I focus on MRK
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instead of MRDK given that the latter is simply a combination of MRD and MRK designs and
does not require any assumptions above and beyond what is required for MRK. Considering
that derivatives of a multivariate function taken from different directions will generally differ,
I denote the directional derivative with respect to a unit vector v by Dv. In addition, I make
the following assumptions for the MRK design.
Assumption 5. (Continuity of Mean Potential Outcome Derivatives) For all x ∈ F and all w
in the interior of the support of Wi, E [Yi(w)|Xi = x] has continuous partial derivatives with
respect to x1, ..., xd.
Assumption 6. (Continuity of Mean Potential Treatment Derivatives) For all x ∈ F and
z ∈ {0, 1}, E [Wi(z)|Xi = x] has continuous partial derivatives with respect to x1, ..., xd.
Assumption 7. (First Stage of MRK Design) For all x ∈ F, there exists a unit vector v ∈ Rd

such that x+ ϵ · v /∈ F for sufficiently small ϵ > 0, and some δ > 0 such that:

lim
ϵ→0

DvE
[
Wi|Xi = x+ ϵ · v,Xi ∈ B1

ϵ (x)
]
− lim

ϵ′→0
DvE

[
Wi|Xi = x+ ϵ′ · v,Xi ∈ B0

ϵ′(x)
]
≥ δ.

Assumption 8. (Monotonicity for Fuzzy MRK) For all x ∈ F, and for any unit vector v ∈ Rd

satisfying x+ ϵ · v /∈ F for sufficiently small ϵ > 0, we have:

lim
ϵ→0

DvWi|(Xi = x+ ϵ · v,Xi ∈ B1
ϵ (x)) ≥ lim

ϵ′→0
DvWi|(Xi = x+ ϵ′ · v,Xi ∈ B0

ϵ′(x)),

almost surely.
Note that given the partial derivatives with respect to x1, ..., xd, assuming they are contin-

uous, we can compute the derivative with respect to any unit vector v using the dot product.
Hence, Assumption 5 also implies that:

lim
ϵ→0

E
[
DvYi(w)|Xi = x′, x′ ∈ B1

ϵ (x)
]
= lim

ϵ′→0
E
[
DvYi(w)|Xi = x′, x′ ∈ B0

ϵ′(x)
]
,

which parallels Assumption 1 in the MRD case.
Under Assumptions 5–7 in the case of sharp MRK (and Assumptions 5–8 for fuzzy MRK),

the MRK estimand ∂E [Yi(w)|X = x] /∂w, denoted by τMRK(x) (respectively, τFMRK(x) for
fuzzy MRK), is given by:

limϵ→0DvE
[
Yi|Xi = x+ ϵ · v,Xi ∈ B1

ϵ (x)
]
− limϵ′→0DvE

[
Yi|Xi = x+ ϵ′ · v,Xi ∈ B0

ϵ′(x)
]

limϵ→0DvE [Wi|Xi = x+ ϵ · v,Xi ∈ B1
ϵ (x)]− limϵ′→0DvE

[
Wi|Xi = x+ ϵ′ · v,Xi ∈ B0

ϵ′(x)
] ,

for any v ∈ Rd satisfying x + ϵ · v /∈ F for sufficiently small ϵ > 0. In the case of a sharp
single-dimensional regression kink design, the RK estimand is termed the treatment-on-the-
treated (TOT) by Florens, Heckman, Meghir, and Vytlacil (2008) or the local average response
(LAR) by Altonji and Matzkin (2005). Since the treatment effect is conditional on individuals
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having running variables equal to x in the MRK case, I call this the conditional TOT (CTOT)
or conditional LAR (CLAR). For a fuzzy MRK design, the estimand τFMRK(x) likely still
represents a weighted average of the marginal effects of Wi on Yi if one extends arguments
from Card, Lee, Pei, and Weber (2015) to multiple dimensions.

Next, I describe some theoretical results for my MRK estimator, which is given by τ̂MRK(x) =

∆Dv ĝ(x))/∆Dvh(x) and τ̂FMRK(x) = ∆Dv ĝ(x))/∆Dvĥ(x), where hz(x) ≡ E[Wi|Xi = x, x ∈
Ωz], and ĥz(x) is the corresponding thin plate spline estimate.24 The following theorem es-
tablishes the main properties of the the MRK and FMRK estimators.

Theorem 6. Let Ωz be open bounded subsets of Rd satisfying the uniform cone condition
and having a Lipschitz boundary, and suppose that condition F and Assumptions 5–7 are
satisfied. Moreover, assume that the penalty parameters are chosen such that λMRK,z = o(1)

and λ−1
MRK,z = o

(
n
2m/(2+d)
z

)
. Then,

1. τ̂MRK(x) →p τMRK(x) for all x ∈ F as n0 → ∞, and n1 → ∞.

2. For each x ∈ F,
√
nλ(2+d)/2m

(
τ̂MRK(x)− τMRK(x)

)
→d N(bMRK(x), σ2

MRK(x)) for
some constants bMRK(x) and σ2

MRK(x).

3. If we choose λz such that λz = O(n
−2m/(2m+d)
z ), then the optimal rate of convergence

for τ̂MRK(x) is achieved, and this rate is given by O(n−2(m−1)/(2m+d)).

4. Suppose that we choose λz such that λz = o(n
−2m/(2m+d)
z ). Then, for each x ∈ F,

Pr
(
τMRK(x) ∈ C(τ̂MRK(x), ŝe(τ̂MRK(x)), 1− α)

)
→ 1− α,

where:

C(τ̂MRK(x), ŝe(τ̂MRK(x)), 1− α)

≡
[
τ̂MRK(x)− q1−α/2 · ŝe

(
τ̂MRK(x)

)
, τ̂MRK(x) + q1−α/2 · ŝe

(
τ̂MRK(x)

)]
, (10)

and ŝe
(
τ̂MRK(x)

)
denotes the standard error of τ̂MRK(x) computed using the posterior

distribution of the thin plate spline estimates.

5. In the case of fuzzy MRK, if Assumption 8 holds and the penalty parameters for ∆Dvĥ(x)

are chosen such that:

λh
FMRK,z = o(1) and

(
λh
FMRK,z

)−1
= o

(
n2m/(2+d)
z

)
,

then for each x ∈ F, τ̂FMRK(x) →p τFMRK(x) as n0 → ∞, and n1 → ∞.
24Note that the formula is essentially the same for both sharp and fuzzy MRK estimators, the only difference

being that there is no uncertainty in the denominator for sharp MRK.
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Corollary 7. Suppose that the assumptions of Theorem 6 hold, and that gz ∈ Hm+1(Ωz) for
z = 0, 1. Denote the penalty parameter chosen using GCV when the penalty order of the thin
plate spline is m by λ̂GCV

m,z , and similarly, denote the estimated CEFs under penalty order m

with penalty parameter λz by ĝm,z(x;λz). Then, we have:

Pr
(
τMRK(x) ∈ C(τ̂MRK

m (x), ŝe(τ̂MRK
m (x)), 1− α)

)
→ 1− α,

where τ̂m(x) ≡ Dv ĝm,1(x; λ̂
GCV
m+1,1)−Dv ĝm,0(x; λ̂

GCV
m+1,0).

Similar to the MRD estimator, we may compute the standard error of τ̂MRK(x) and
τ̂FMRK(x) using bootstrap. Alternatively, we can formulate FMRK estimation as a seemingly
unrelated ridge regression (SURR), which then allows us to compute standard errors using the
delta method (for details, see Appendix section C).

2.4 Discussion

First, in addition to the conditional average treatment effects, we may also be interested in
the average effect over a subset of the treatment frontier. We can recover this by estimating
the distribution of the running variables over F, and then integrating the CATE estimates
over the relevant subset of F with respect to this distribution. The standard errors can then
be calculated using the delta method (see Appendix section G).

Second, one may be worried that if there are many more observations on one side of
the treatment threshold F than the other, this may induce a discrepancy in the degree of
regularization chosen for ĝ1(x) and ĝ0(x), potentially leading to spurious estimates of treatment
effect heterogeneity. This is arguably less of a concern in the present setting if one focuses on
observations relatively close to F, given that a large imbalance in the number of observations
on opposite sides of F suggests that precise manipulation of the running variables may be
possible, which will likely invalidate the identification assumption for the MRD (or MRK)
design.

Third, even in an MRD setting, the estimated kink at the threshold (i.e., Dv τ̂(x)) may still
be of economic interest. In particular, the estimand Dv∆g(x) = Dvτ(x) describes whether the
treatment effect is likely to increase or decrease if the running variables’ thresholds were per-
turbed slightly. In MRD designs for program evaluation, thresholds for the running variables
are typically chosen by the policymaker, so Dvτ(x) may be of policy relevance.

Fourth, for implementation purposes, it is preferable that both running variables have
comparable scale. This is can easily be achieved by normalizing both variables to have unit
variance for MRD estimation, and then converting the estimates back into the original units
after that.

Fifth, in practice, MRK estimation requires substantially more data than MRD estimation.
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This is evident from the MRK’s slower convergence rate,25 and the fact that even though the
same choice of λ guarantees consistency and asymptotic validity of CIs for both sharp MRD
and MRK estimators, the squared bias is O(λ) for the former, whereas it is O(λ(m−1)/m) for
the latter.

Finally, a practical issue with estimating thin plate splines is its computational expense.26

Hence, I use an approximation to thin plate splines suggested by Wood (2003) — thin plate
regression splines (TPRS) — which allows the user to balance the tradeoff between computa-
tional efficiency and accuracy by choosing a parameter kz (larger values of which correspond
to greater accuracy).27 Due to the larger bias for kink designs, a greater value of kz is recom-
mended for MRK and MRDK estimation (compared to MRD estimation). A more detailed
description of TPRS can be found in Appendix section F.

3 Simulations

In this section, I present simulation results for the MRD, MRDK, and MRK estimators de-
scribed in the previous section.

3.1 MRD Simulation

I first present simulation results for the MRD estimator, which I compare to various single-
dimensional methods applied to the MRD setting, specifically, the local linear estimator with
MSE-optimal bandwidths as in Imbens and Kalyanaraman (2012, henceforth IK), the bias-
corrected local linear estimator in Calonico, Cattaneo, and Titiunik (2014, henceforth CCT),
and the bounding approach based on an assumed bound for the second derivative as described
in Kolesár and Rothe (2018), henceforth KR. In addition, I consider three versions of the
MRD estimator in these simulations: an estimator using the MSE-optimal choice of penalty
parameter for the thin plate regression splines (TPRS), a bias-corrected estimator using the
MSE-optimal penalty parameter from higher-order TPRS, and an undersmoothed estimator
using half of the MSE-optimal penalty parameter.

For my simulations, I consider variants of the following data-generating process (DGP)

25Specifically, the optimal convergence rates are O
(
n−2(m−1)/(2m+d)

)
for sharp MRK and O

(
n−2m/(2m+d)

)
for sharp MRD.

26In particular, while an efficient O(nz) algorithm exists for the single-dimensional thin plate splines (also
known as smoothing splines), computational costs for thin plate splines with d ≥ 2 are generally of order
O(n3

z).
27At a high level, thin plate regression splines (TPRS) uses a basis matrix of rank kz instead of Kz ≈ nz

in the case of thin plate splines, where the kz basis functions for TPRS are chosen so that the minimization
problem for thin plate splines is perturbed in the smallest possible way in a minimax sense (made precise in
Appendix section F). This approximation reduces the computational expense from O(n3

z) to O(kzn
2
z).
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based on a fifth order polynomial:

Yi =


∑

p+q≤5 ap,qX
p
1iX

q
2i + τ(X1i, X2i) + ϵi X1i ≥ 0, X2i ≥ 0,∑

p+q≤5 ap,qX
p
1iX

q
2i + ϵi otherwise.

The error terms ϵi are distributed i.i.d. standard Gaussian, and the running variables X1i and
X2i are each drawn independently from a 2Beta(3, 3) − 1 distribution, so that the running
variables have support on [−1, 1]2, similar to the simulations in IK.28 I consider two versions
of this DGP, with either constant treatment effects where I set τ(X1i, X2i) = 0.5, or hetero-
geneous effects where I let τ(X1i, X2i) = 0.5 +X1i −X2i. Figures 5a and 5b show the CEFs
for these two different DGPs. For each different DGP, I run 100 simulations, each with 10,000
observations, and use Bayesian standard errors for MRD inference.

Figure 5: CEFs for DGPs in MRD Simulations

(a) Constant Treatment Effects (b) Heterogeneous Treatment Effects

Notes: These figures show the conditional expectation functions (CEFs) for the two DGPs I consider in my
MRD simulations. Panel A shows the CEF for the DGP with constant treatment effects, whereas panel B
shows the CEF in the DGP with heterogeneous treatment effects.

The results for the DGP with constant treatment effects are shown in Table 1, where the
MRD estimates obtained by integrating the MRD CATE estimates τ̂(x) over the relevant part

28In fact, this is not the most favorable distribution choice for my thin plate spline-based estimator. In
particular, the convergence results for thin plate splines often require that observations satisfy a quasi-uniform
condition, so one would expect the spline-based estimator to perform even better in finite samples if we assumed
the running variables were uniformly distributed. Hence, these simulations also provide an informal test of
whether the theoretical results in the previous section are relatively robust to different distributions of the
running variables.

24



of the treatment frontier with respect to the (estimated) distribution of the running variables.
We would expect the single-dimensional methods to perform well in this case, given that they
are restricted to estimating constant treatment effects by design. Panels A and B show the
performances of different estimators of the average treatment effects over the two segments
of the treatment frontier F: the positive x2-axis and the positive x1-axis respectively (given
that the single-dimensional estimators produce estimates corresponding to these two subsets
of F).29

We observe in the first two columns that the bias for the MRD estimators are sometimes
larger than the other estimators, but that they also have smaller MSE. In the last two columns,
we see that the 95 percent CIs for all estimators have roughly the correct coverage, but that the
MRD CIs tend to be shorter than the CIs for other estimators, reflecting the efficiency gains
from using all of the data for estimation simultaneously, compared to the single-dimensional
methods which use only about half of the data for each estimation.

Table 1: MRD Simulation Results for DGP with Constant Treatment Effects

Estimator Bias MSE Coverage Average CI Length
IK 0.002 0.009 0.97 0.334
CCT -0.015 0.017 0.87 0.397
KR 0.001 0.009 0.96 0.372
MRD (MSE-Optimal) -0.030 0.006 0.94 0.318
MRD (Bias-Corrected) -0.031 0.007 0.94 0.329
MRD (Undersmoothing) -0.038 0.008 0.94 0.333

Estimator Bias MSE Coverage Average CI Length
IK -0.005 0.010 0.93 0.350
CCT 0.022 0.014 0.91 0.397
KR -0.007 0.008 0.98 0.361
MRD (MSE-Optimal) -0.018 0.006 0.95 0.320
MRD (Bias-Corrected) -0.018 0.007 0.95 0.331
MRD (Undersmoothing) -0.015 0.007 0.95 0.335

Panel A. Estimates of the Average Treatment Effect Over {X 1=0, X 2≥0}

Panel B. Estimates of the Average Treatment Effect Over {X 1≥0, X 2=0}

Notes: The IK estimator is based on local linear regression with bandwidth selection according to IK (2012). The CCT estimator is based on 
local linear regression with bandwidth selection and bias correction according to CCT (2014). The KR estimator is based on the method 
introduced in KR (2018) with an assumption on the bound for the second derivative of the CEF. Three versions of the MRD estimator are 
considered in these simulations: an estimator using the MSE-optimal choice of penalty parameter for the thin plate regression splines (TPRS), a 
bias-corrected estimator using the MSE-optimal penalty parameter from higher-order TPRS, and an undersmoothed estimator using half of the 
MSE-optimal penalty parameter. The results shown in this table are based on 100 realizations of the DGP with constant treatment effects. 
Confidence intervals are based on a 5 percent significance level. See text for more details on these simulations.

29For the MRD estimator, I estimate τ(x) at 10 equally spaced grid points along the positive x2-axis, and
similarly for the positive x1-axis (ranging from zero to the largest observed value of the relevant running
variable in each realization of the DGP).
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Simulation results for the DGP with heterogeneous treatment effects are shown in Table 2.
There is no natural way to estimate heterogeneous treatment effects using single-dimensional
methods, so instead, I apply them separately to different subsets of the treatment frontier
in order to estimate heterogeneous effects. Specifically, in Panel A, I apply these methods
separately to {X1i = 0, X2i ∈ [0, c1]}, {X1i = 0, X2i ∈ (c1, c2]}, ..., {X1i = 0, X2i ∈ [c9, c10]},
where c0 = 0, c1, ..., c10 are equally spaced grid points, with c10 being the largest value of X2i

observed in that particular realization of the DGP, thus yielding 10 different estimates of τ(x)
over the positive x2-axis. I then repeat this procedure to obtain 10 different estimates of τ(x)
over the positive x1-axis for the single-dimensional estimators in Panel B.

Columns 1 and 2 of Table 2 show that the MRD estimators tend to have larger bias but
smaller integrated MSE compared to the other estimators, similar to the simulations with
constant treatment effects.30 However, columns 3 and 4 show a striking difference between
the performance of the CIs for the MRD CATE estimates and those of the other estimators.
Column 3 shows that the pointwise MRD CIs have close to nominal coverage (close to 95
percent), whereas those for the pointwise IK and KR CIs have much lower coverage (typically
ranging between 50 and 75 percent). Moreover, this is despite the fact that the MRD CIs are
roughly half the length of the other CIs, as shown in the last column.31

30The bias (or integrated MSE) in these simulations are computed as the weighted average of the difference
(or squared difference) between the treatment effect estimate over a subset of the treatment frontier and the
true average treatment effect over the same subset. The weights are computed based on the density of the
running variables over these subsets.

31The underperformance of the IK, CCT, and KR CIs in the DGP with heterogeneous treatment effects is not
a critique of these methods, given that they were designed for single-dimensional RD. Rather, it shows that using
single-dimensional RD methods in an MRD setting in an ad hoc manner to estimate heterogeneous treatment
effects may result in poor finite-sample performance (or in other words, they may require a substantially larger
sample to perform well compared to the MRD estimator proposed in this paper).

26



Table 2: MRD Simulation Results for DGP with Heterogeneous Treatment Effects

Estimator Bias IMSE Coverage CI Length
IK 0.008 0.044 0.741 0.982
CCT -0.006 0.080 0.751 1.216
KR 0.019 0.029 0.786 0.933
MRD (MSE-Optimal) -0.028 0.017 0.927 0.498
MRD (Bias-Corrected) -0.030 0.021 0.922 0.522
MRD (Undersmoothing) -0.037 0.020 0.930 0.532

Estimator Bias IMSE Coverage CI Length
IK -0.010 0.043 0.507 0.998
CCT 0.004 0.077 0.564 1.225
KR -0.020 0.032 0.526 0.949
MRD (MSE-Optimal) -0.019 0.015 0.944 0.502
MRD (Bias-Corrected) -0.020 0.018 0.942 0.527
MRD (Undersmoothing) -0.016 0.018 0.945 0.536

Panel A. Estimates of the Treatment Effect Over {X 1=0, X 2≥0}

Panel B. Estimates of the Treatment Effect Over {X 1≥0, X 2=0}

Notes: The IK estimator is based on local linear regression with bandwidth selection according to IK (2012). The CCT estimator is based on 
local linear regression with bandwidth selection and bias correction according to CCT (2014). The KR estimator is based on the method 
introduced in KR (2018) with an assumption on the bound for the second derivative of the CEF. Three versions of the MRD estimator are 
considered in these simulations: an estimator using the MSE-optimal choice of penalty parameter for the thin plate regression splines (TPRS), a 
bias-corrected estimator using the MSE-optimal penalty parameter from higher-order TPRS, and an undersmoothed estimator using half of the 
MSE-optimal penalty parameter. The results shown in this table are based on 100 realizations of the DGP with heterogeneous treatment effects. 
The bias and IMSE in these simulations are respectively computed as the weighted average of the difference and weighted average squared 
difference between the treatment effect estimate over a subset of the treatment frontier and the true average treatment effect over the same 
subset. The weights are based on the density of the running variables over these subsets. Confidence intervals are based on a 5 percent 
significance level, and confidence intervals and coverage rates are pointwise. See text for more details on these simulations.

One may wonder whether the MRD estimates are able to capture qualitative features
of the treatment effect heterogeneity, namely that it is increasing in X1i and decreasing in
X2i. Appendix Figure A.2 shows that the MRD estimates are indeed increasing in X1i and
decreasing in X2i, and that they correspond relatively closely to the true treatment effects
(shown in red).32

Finally, in Appendix Table A.1, I explore the performance of the MRD estimators in greater
detail. In particular, I compare the pointwise CIs based on analytic (i.e., Bayesian) standard
errors to pointwise CIs based on nonparametric bootstrap, and I also present results for the
simultaneous confidence bands. These results indicate that pointwise CIs based on analytic
standard errors and nonparametric bootstrap perform quite similarly in terms of both coverage
rates and CI length, while the simultaneous confidence bands are (unsurprisingly) substantially
wider, and tend to have conservative coverage rates.

32Moreover, if we plot a linear fit through the MRD estimates using weighted least squares (WLS) or feasible
generalized least squares (FGLS), we observe that the resulting fit (shown as dashed green and blue lines
for WLS and FGLS respectively) is very close to the true treatment effect, and the slope coefficient is not
statistically different from the true slope for the treatment effect at the 5 percent significance level.
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3.2 MRDK and MRK Simulations

Moving onto simulations for the MRDK and MRK estimators, I first consider simulations
based on the UI examples covered in the previous section. I adopt the same assumptions on
the distributions of the running variables Xi and error terms ϵi as in the MRD simulations,
and normalize the running variables so that the cap is binding for individuals in the positive
quadrant of the running variable space. In addition, I assume that weekly UI benefits has a
(constant) negative effect τ < 0 on job-finding Yi, and that it is given by:

Yi = τWi + ϵi.

A subtlety involving MRK estimation for this UI example is that there are more than two
kinks in the UI benefit schedule, so I estimate more than two thin plate splines in order to
avoid fitting a spline directly over a kink.33

As a closer parallel to the DGP considered for the MRD simulations, I also consider a DGP
for the MRK design which only requires the estimation of two separate thin plate splines. For
this DGP, I assume the same relationship between Yi and Wi, and that Wi is a fifth-order
polynomial in the running variables:

Wi =


∑

p+q≤5 bp,qX
p
1iX

q
2i X1i < 0 or X2i < 0,

0 otherwise.

In addition, I assume that the coefficients bp,q are chosen such that b0,0 = 0,
∑

q≤4 b1,qX
q
2i ̸= 0,

and
∑

p≤4 bp,1X
p
1i ̸= 0, so as to ensure that Wi is continuous in Xi, and that Assumption 7

(i.e., the first stage assumption) for the MRK design is satisfied. I simulate these three DGPs
with N = 10, 000 observations over 100 replications, estimating τ in each replication using my
MRDK and MRK estimators.34

The results in Table 3 show that coverage rates for the MRDK and MRK estimates are
100 percent, suggesting that the analytic standard errors are conservative in this setting. The
bias, MSE, and average CI length for the MRDK and MRK estimates tend to be larger than
those for the MRD estimates (which is unsurprising given the slower convergence rates for
the estimation of kinks relative to discontinuities), but are of a similar order of magnitude in
most cases. We also observe that the MRDK and MRK estimates using different criteria for
selecting the penalty parameters are broadly similar.

33Specifically, I fit seperate thin plate regression splines over the regions: {(x1, x2)|x1 ≥ 0, x2 ≥ 0},
{(x1, x2)|x1 < 0, x2 ≥ 0}, and {(x1, x2)| − x1 ≤ x2 < 0}. Then, I take the difference between the partial
derivatives of the first two thin plate regression splines at the their boundary with respect to x1, and the
difference between partial derivatives of the first and third splines at their boundary with respect to x2.

34As discussed in the previous section, the bias for the MRK estimator tends to be greater than the MRD
estimator, so I use a larger number of basis functions kz for the thin plate regression splines (compared to the
MRD simulations) for a more accurate approximation of the thin plate splines.
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Table 3: MRDK and MRK Simulation Results
å

UI Example: MRDK (kink) Bias MSE Coverage Avg. CI Length
MRDK: MSE-Optimal -0.006 0.008 1.00 0.216
MRDK: Bias-Corrected -0.009 0.030 1.00 0.317
MRDK: Undersmoothing -0.005 0.015 1.00 0.265

UI Example: MRK
MRK: MSE-Optimal -0.001 0.010 1.00 0.229
MRK: Bias-Corrected -0.010 0.017 1.00 0.362
MRK: Undersmoothing -0.005 0.014 1.00 0.282

Polynomial Specification: MRK
MRK: MSE-Optimal 0.004 0.469 1.00 1.063
MRK: Bias-Corrected -0.044 0.736 1.00 1.193
MRK: Undersmoothing -0.078 0.735 1.00 1.221

UI Example: MRDK (discontinuity) Bias MSE Coverage Avg. CI Length
MRDK: MSE-Optimal 0.003 0.007 1.00 0.128
MRDK: Bias-Corrected 0.002 0.010 1.00 0.136
MRDK: Undersmoothing 0.002 0.008 1.00 0.134

UI Example: MRK
MRK: MSE-Optimal 0.016 0.018 1.00 0.321
MRK: Bias-Corrected 0.052 0.103 1.00 0.579
MRK: Undersmoothing 0.014 0.025 1.00 0.386

Polynomial Specification: MRK
MRK: MSE-Optimal 0.061 0.272 1.00 0.802
MRK: Bias-Corrected 0.029 0.453 1.00 0.902
MRK: Undersmoothing 0.018 0.438 1.00 0.922

Panel A. Estimates of the Average Treatment Effect Over {X 1=0, X 2≥0}

Panel B. Estimates of the Average Treatment Effect Over {X 1≥0, X 2=0}

Notes: The table contains results from the MRDK and MRK simulations based on data-generating processes described in the main 
text, with sample sizes of N=10,000 and 100 replications. Three versions of the MRDK and MRK estimators are considered in these 
simulations: an estimator using the MSE-optimal choice of penalty parameter for the thin plate regression splines, a bias-corrected 
estimator using the MSE-optimal penalty parameter from higher-order TPRS, and an undersmoothed estimator using half of the 
MSE-optimal penalty parameter. Confidence intervals (CIs) are constructed based on a 5 percent significance level.

Finally, we observe that in all the MRD, MRDK, and MRK simulations, estimators using
different selection criteria for the thin plate regression splines’ penalty parameters tend to
perform similarly. Hence, in the following section on empirical applications, I report MRD
estimates using MSE-optimal penalty parameters for most of my results. The exception is when
I test the validity of the research designs (specifically, when I replace the outcome variable
with a predetermined individual characteristic, or test for a discontinuity in the multivariate
density function), considering that the point estimate is of secondary importance in these
instances, and the focus is on testing whether the identifying assumptions for the research
design are violated.
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4 Empirical Applications

In this section, I present two empirical applications for my MRD estimator. The first appli-
cation studies the effect of financial aid eligibility on college enrollment using an MRD design
with test scores and family wealth as the running variables, while the second application
studies the effect of campaign advertisements on voter turnout using a geographical MRD
design.35

4.1 Effect of Financial Aid Eligibility on College Enrollment

In this subsection, I present an empirical application based on the Ser Pilo Paga (SPP) pro-
gram in Colombia, using data from Londoño-Vélez, Rodríguez, and Sánchez (2020, henceforth
LRS). The SPP is a merit-based financial aid program introduced in Colombia in 2014. Stu-
dents who score above a threshold on a standardized high school test and whose families are
poor enough are eligible for financial aid if they enroll in a university with High Quality Ac-
creditation. The SPP provides loans that are forgivable upon graduation, as well as a biannual
stipend while recipients attend college.

For convenience, in my analysis I normalize the running variables so that they have stan-
dard deviation one, and so that students with values of both running variables greater than
zero are eligible for financial aid. Henceforth, I refer to these normalized running variables
as the test score and inverse wealth index.36 Histograms of the running variables based on
my main sample are shown in Appendix Figure A.3, and we observe that the SPP program
is much more selective on the academic dimension than on the wealth dimension, i.e. most
students in the sample are poor enough to qualify, but relatively few score well enough on the
standardized test to do so.

Before proceeding to the main estimation, I present tests of the validity of this MRD design,
based on Lee’s (2008) observation that if individuals close to the thresholds are able to precisely
manipulate the values of their running variables to fall on the side of the thresholds they find
desirable, this will likely invalidate the research design. This observation yields two testable
implications: first, there should not be a discontinuity in pre-determined characteristics of
individuals on either side of F, and second, there should not be a discontinuity in the density
of individuals at F.

35Given the simulation evidence in the previous section that MRD estimates using different methods for
selecting the penalty parameters tend to be quite similar, I report MRD estimates using MSE-optimal penalty
parameters for most of my results, and only use the bias-corrected MRD estimates when testing the valid-
ity of the MRD research design (based on replacing the outcome variable with a predetermined individual
characteristic, or based on a multidimensional McCrary test).

36In addition, I focus on the first cohort potentially eligible for the SPP (given that the program was
announced two months after students took the standardized high school test, so there is little scope for test
score manipulation), and drop observations with values of the running variables lower than the 1st percentile
or greater than the 99th percentile (considering that these observations do not affect the CATE estimates at
the boundary, and only add to the computational burden of density estimation).
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I test the first of these conditions by estimating MRD designs replacing the outcome
variable with age and gender, and plot the CATE estimates in Figure 6. The simultaneous
confidence bands indicate that we are unable to reject that null that the CATE is zero along
the entirety of F at the 5 percent significance level, which is consistent with the validity of the
MRD design.

Figure 6: Placebo Test: Effect of SPP on Pre-Determined Characteristics
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Notes: The figures show MRD estimates of the CATE on the effect of financial aid on age and gender, as
a function of test scores for students at the wealth threshold, and as a function of the inverse wealth index
for students at the test score threshold. The light and dark shaded regions indicate 95 percent simultaneous
confidence bands and 95 percent pointwise confidence intervals for the CATE estimates respectively.

The lack of any clear discontinuity in the univariate histograms of Appendix Figure A.3 is
consistent with there being no precise manipulation, but does not necessarily imply that there
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are no discontinuities in the multivariate density (see Appendix section D for an example).37,38

Hence, I develop a multidimensional “McCrary test” to formally test for discontinuities in the
multivariate density function. At a high level, I first estimate a binned histogram, before
applying the MRD estimator using the height of this histogram as the outcome variable.
Theoretical properties for this multidimensional McCrary test are given in Appendix section
D, where I also demonstrate via simulations that the test is able to detect discontinuities in the
multivariate density even if the marginal univariate densities are smooth. On the other hand,
when I apply this test to the SPP data, Figure 7 shows that estimates of the discontinuity are
all statistically indistinguishable from zero at the 5 percent significance level, which supports
the identification assumption of no precise manipulation.

Figure 7: Two-Dimensional “McCrary Tests”
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Notes: The figure shows two-dimensional “McCrary tests” for discontinuities in the multivariate density function
along the treatment frontier F. The shaded regions in light grey and dark grey represent the 95 percent pointwise
confidence intervals and 95 percent simultaneous confidence bands respectively.

Having provided evidence on the credibility of this research design, I estimate the effect of
the SPP on enrollment patterns. Tables 4 and 5 show the estimated effects of the program on
enrollment in various types of college, for students with eligible wealth and test scores close to
the threshold and vice versa, respectively. Panel A in these tables shows the MRD estimates
of the treatment effects, whereas Panel B shows the original estimates from LRS, which were
obtained by estimating single-dimensional RDs using CCT’s method.

37For example, suppose that graders for the SABER 11 test believe that the SPP program should be targeted
towards poor students to a greater extent. Then, it is possible that they may manipulate the grades of students
who are far from the wealth threshold (i.e., very poor) to meet the threshold, but manipulate grades of students
who are close to the wealth threshold (who are thus less poor) to fall just below the threshold. In this case,
since manipulation occurs in both directions at the test score boundary, they may cancel out on average, and
manipulation will not be detected from the univariate histogram for test scores.

38One may try to address this by plotting histograms for various subsets of the data as in Appendix Figures
A.4, A.5, or plotting a two-dimensional histogram as in Appendix Figure A.6. However, slicing up the data may
result in an underpowered test, and discontinuities may also be difficult to detect visually in a two-dimensional
histogram.
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We observe that the MRD point estimates and the original point estimates from LRS are
quite similar qualitatively. Eligibility for the SPP increases overall college enrollment, an effect
that is driven by increased enrollment in high quality private institutions; in fact, eligibility
for SPP decreases enrollment in low quality colleges. This pattern can be explained by the
fact that the SPP applies only for institutions with High Quality Accreditation.

In addition, we observe that the effects on enrollment (in any college, any high quality
college, or any high quality private college) tend to be larger for students at the test score
threshold than for students at the wealth threshold. One explanation for this pattern is that
the test score threshold focuses on students with qualifying inverse wealth indices, who are on
average much poorer than students at the wealth threshold with qualifying test scores. Hence,
credit constraints may be more binding for the former set of students, thus explaining the
larger effects on enrollment.39

While the MRD point estimates are not very different from the original LRS estimates,
there are significant differences in their precision. This is especially pronounced in Table 5,
which shows estimates of the average effect along the wealth threshold. We observe that MRD
standard errors are sometimes less than half of the LRS standard errors, which makes sense
given that LRS lose most of their sample when restricting the sample to students with eligible
test scores for the analysis at the wealth threshold (due to the high test score threshold noted
earlier) whereas the MRD estimator uses all of the data simultaneously.

39The only qualitative difference between the MRD and LRS estimates in these tables is that the MRD
estimator finds that the SPP has a negative effect on enrollment in high quality public colleges in Table 4 for
students along the test score threshold, whereas LRS find no effect for these students. Nonetheless, the negative
effect is consistent with the general narrative in LRS that the SPP program induced students to substitute
away from high quality public colleges to private colleges, and also agrees with LRS (and MRD) estimates of a
negative effect on enrollment in high quality public colleges for students along the wealth threshold, as shown
in Table 5.
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Table 4: Effect of Financial Aid Eligibility on Enrollment: Students with Eligible Inverse
Wealth Indices and Test Scores Close to the Threshold

Panel A. MRD Estimates

High Quality Institutions Low Quality Institutions
Any Any Private Public Any Private Public
(1) (2) (3) (4) (5) (6) (7)

Treatment Effect Estimate 0.334*** 0.475*** 0.478*** -0.01** -0.139*** -0.062*** -0.07***
(0.012) (0.013) (0.012) (0.005) (0.007) (0.004) (0.005)

Number of Observations 349,015 349,015 349,015 349,015 349,015 349,015 349,015

Panel B. Original Estimates from LRS

High Quality Institutions Low Quality Institutions
Any Any Private Public Any Private Public
(1) (2) (3) (4) (5) (6) (7)

Treatment Effect Estimate 0.320*** 0.465*** 0.466*** 0.000 -0.154*** -0.063*** -0.087***
(0.012) (0.012) (0.011) (0.007) (0.011) (0.007) (0.009)

Number of Observations 299,475 299,475 299,475 299,475 299,475 299,475 299,475

Notes: Standard errors are shown in parentheses.

Table 5: Effect of Financial Aid Eligibility on Enrollment: Students with Eligible Test Scores
and with Inverse Wealth Indices Close to the Threshold

Panel A. MRD Estimates

High Quality Institutions Low Quality Institutions
Any Any Private Public Any Private Public
(1) (2) (3) (4) (5) (6) (7)

Treatment Effect Estimate 0.288*** 0.429*** 0.478*** -0.02*** -0.147*** -0.074*** -0.077***
(0.021) (0.023) (0.019) (0.005) (0.011) (0.006) (0.005)

Number of Observations 349,015 349,015 349,015 349,015 349,015 349,015 349,015

Panel B. Original Estimates from LRS

High Quality Institutions Low Quality Institutions
Any Any Private Public Any Private Public
(1) (2) (3) (4) (5) (6) (7)

Treatment Effect Estimate 0.274*** 0.396*** 0.477*** -0.079*** -0.120*** -0.052*** -0.076***
(0.027) (0.024) (0.020) (0.018) (0.022) (0.015) (0.016)

Number of Observations 23,132 23,132 23,132 23,132 23,132 23,132 23,132

Notes: Standard errors are shown in parentheses.

In addition to precision gains, the MRD estimator also allows us to recover heterogeneous
treatment effects, which is especially interesting in this context given that it is unclear a
priori whether the treatment effect should be increasing or decreasing in test scores and family
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wealth. Focusing on test scores first, on the one hand, we might expect that most high-ability
students would have gone to college whether or not they were offered financial aid (e.g., perhaps
because returns to college are increasing in academic ability), in which case there would be
a “ceiling effect” and the treatment effect would be decreasing in test scores. On the other
hand, several studies have uncovered a “reverse Roy” pattern of selection in education (Walters
2012; Kline and Walters 2016). If this were the case, high-ability students may require extra
financial incentives to enroll in college, so the treatment effect may be increasing in test scores.

As for family wealth, one might expect the effect of the SPP to be increasing in the inverse
wealth index, given that credit constraints may be more binding for poorer families. On the
other hand, the test score threshold is rather high, so the marginal student is quite strong
academically. So, it might also be the case that the labor market returns to a college degree
are so high for these students that they are willing to borrow to go to college even at high
interest rates.

MRD estimates of treatment effect heterogeneity shown in Figure 8 shed some light on
these competing theories. The patterns are qualitatively consistent with a ceiling effect rather
than a reverse Roy pattern: panel (a) shows that among students with wealth at the threshold
and qualifying test scores, a one standard deviation higher test score is associated with a
10.6 percentage point smaller effect of financial aid on college enrollment, which is roughly
one-third of the overall treatment effect. However, the confidence bands are rather wide, and
a test for the null of constant treatment effects has a p-value of 0.224.40 Panel (b) shows
even less evidence of the treatment effect heterogeneity as a function of family wealth, with
the treatment effect being only roughly 0.7 percentage points smaller for students with one
standard deviation higher inverse wealth index on average (among students at the test score
threshold with qualifying family wealth).

40This p-value is measured based on the MRD estimates using MSE-optimal penalty parameters for the
underlying thin plate regression splines (TPRS). If we instead use the bias-corrected MRD estimates based on
MSE-optimal penalty parameters from higher-order TPRS, or the undersmoothed TPRS using one-half of the
MSE-optimal penalty parameters, we obtain p-values of 0.949 and 0.367 respectively. See Appendix section B
for details about implementation of these tests.
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Figure 8: Heterogeneity in the Effect of SPP on Enrollment in Any College
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Notes: Panel (a) shows MRD estimates of the CATE on the effect of financial aid on the probability of college
enrollment as a function of test scores, for students with inverse wealth indices at the cutoff, whereas panel
(b) shows MRD estimates of the CATE as a function of the inverse wealth index, for students with test scores
at the cutoff. The shaded regions in light grey and dark grey represent the 95 percent pointwise confidence
intervals and 95 percent simultaneous confidence bands respectively.

Appendix Figures A.8 and A.9 display analogous MRD estimates of treatment effect het-
erogeneity, focusing on enrollment in different types of colleges rather than in any type of
college. We observe qualitatively similar patterns of treatment effect heterogeneity as for the
results on enrollment in any college: focusing on the signs and magnitudes of the slope co-
efficients, the effect of financial aid on enrollment tends to be decreasing in test scores, and
roughly constant as a function of family wealth.

Finally, a policymaker may be more interested in a slightly different type of treatment
effect heterogeneity: the marginal returns from changing the test and wealth thresholds (in
terms of college enrollment), which are given by the discontinuities in the partial derivatives at
the thresholds. I estimate discontinuities in the derivatives at the thresholds for the test score
and wealth indices of -0.103 (0.025) and 0.031 (0.033) respectively, suggesting that there are
increasing returns to lowering the test score threshold, and roughly constant returns to lowering
the family wealth threshold. This is consistent with the qualitative evidence in Figure 8 that
the treatment effect is decreasing in test scores and constant in the wealth index, although
these two sets of results need not necessarily coincide.41

41Note that while the marginal returns from increasing the thresholds are loosely connected to treatment
effect heterogeneity along the treatment frontier, they measure different quantities. In particular, the slopes
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4.2 Effect of Campaign Advertisements on Voter Turnout

In this subsection, I consider an empirical example based on the effect of campaign adver-
tisements on voter turnout during the 2008 presidential election. The research design is a
geographical RD that leverages a discontinuity in the volume of political ads that voters in
New Jersey on either side of a media-market boundary were exposed to. Similar sources of
variation were used in Huber and Arceneaux (2007) and Krasno and Green (2008), but here I
compare my estimation results to those from Keele and Titiunik (2015), and Cattaneo, Idrobo,
and Titiunik (2023) since these papers estimate RD specifications.

Presidential campaigns often buy television advertisements by designated market areas
(DMAs). These are labels for different areas chosen by Nielsen Media Research, and impor-
tantly for the purposes of this empirical application, the designation of DMAs have no clear
relationship with political variables. Instead, they are defined by Nielson as “exclusive geo-
graphic area of counties in which the home market television stations hold a dominance of
total hours viewed”, and often straddle states. Here, we compare turnout of voters in New
Jersey on either side of a boundary defining different DMAs, who were exposed to very differ-
ent levels of political advertisements during the 2008 elections: on one side of the boundary,
voters were exposed to an average of 177 presidential ads daily from September 1 until election
day, whereas voters on the other side of the boundary were exposed to no ads at all during this
period (Keele and Titiunik 2015). The treatment and control groups are illustrated graphically
in Figure 9a, where the blue and red points correspond to the location of voters in the DMA
with no ads or many ads respectively, and the black solid line is the geographical boundary
between the two DMAs.

In Keele and Titiunik (2015), the authors implement an MRD design based on local linear
regressions using distance to boundary as the running variable. Specifically, for any point
x ∈ F, they estimate the CATE τ(x) using:

τ̂KT (x) = ĝll1 (x)− ĝll0 (x),

where is the local linear fit’s predicted value based on observations that are treated or un-
treated (z = 1 or z = 0) respectively, with weights depending on distance from x, a bandwidth

for treatment effect heterogeneity along the positive x2-axis and x1-axis shown in Figure 8 measure:∫
X2≥0

∂τ(0, X2)

∂X2
dFX2|X2≥0(X2) and

∫
X1≥0

∂τ(X1, 0)

∂X1
dFX1|X1≥0(X1),

respectively, whereas the marginal returns from increasing the thresholds for the test score and inverse wealth
index respectively measure:∫

X1≥0

∂τ(X1, 0)

∂X2
dFX1|X1≥0(X1) and

∫
X2≥0

∂τ(0, X2)

∂X1
dFX2|X2≥0(X2).

37



hz(x), and a kernel K(·):

(α̂ll
z (x), β̂

ll
z (x)) ≡ argminα,β

nz∑
i=1

(α+ βdist(xi, x))wiz(x),

wiz(x) ≡
1

hz(x)
K

(
dist(xi, x)

hz(x)

)
.

While Keele and Titiunik estimate τ̂KT (x) for three separate x ∈ F, in principle they could
estimate τ̂KT (x) along the entire boundary F. Hence, to facilitate the comparison with my
MRD estimates, I estimate τ̂KT (x) along the entire boundary F.

The results for my MRD CATE estimates (using longitude and latitude as the two run-
ning variables) and the local linear CATE estimates are shown by black and red solid lines
respectively in Figure 9b. The dark shaded regions show the 95 percent pointwise confidence
intervals for the CATE estimates, while the light shaded region shows the 95 percent simulta-
neous confidence bands for the MRD estimates.

First, we observe that the MRD estimate of the ATE along F is statistically indistinguish-
able from zero at the 5 percent significance level, consistent with Keele and Titiunik’s (2015)
finding that there is little evidence that political ads influenced voter turnout. The point esti-
mate of the ATE for the local linear estimator is similarly small, but it is not easy to compute
its standard error, given that for any x, x′ ∈ F, τ̂KT (x) and τ̂KT (x′) are clearly correlated
(since they were estimated using the same data) but were estimated in separate regressions.

Second, we see that the MRD CATE estimates {τ̂(x)}x∈F tends to be smoother than
the local linear CATE estimates {τ̂KT (x)}x∈F, and that the local linear CATE estimates are
sometimes unstable. For instance, we estimate that τ̂KT (x) > 1 at a couple of points along
the boundary, which does not make sense given that both treatment and outcome variables
are binary, and for some points close to the edge of the boundary the local linear estimator
fails to converge. In practice, an empirical researcher is likely to throw out estimates where
τ̂KT (x) > 1, and perhaps it also makes sense to ignore points close to the edge of the boundary
since the data is sparser in that region. However, to the extent that subjective intervention by
the researcher can be avoided, stability of the MRD CATE estimates is an attractive property.

Third, the pointwise confidence intervals for the MRD estimates tend to be narrower than
the local linear estimates. In addition, I am able to estimate simultaneous confidence bands
for the MRD estimate {τ̂(x)}x∈F, whereas it is less straightforward to do so for the local linear
estimates given that τ̂KT (x) and τ̂KT (x′) were estimated in separate regressions for x, x′ ∈ F,
x ̸= x′.
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Figure 9: Effect of the Campaign Advertisements on Voter Turnout
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Notes: Panel (a) shows the locations of voters in neighboring DMAs, with the black line being the boundary
between the DMAs. Locations of voters in the DMA where TV campaign ads were or were not broadcasted
in the 2008 US presidential election are shown as red and blue points respectively. Panel (b) shows the MRD
CATE estimates as well as the local linear CATE estimates, going from the northwest to southeast portion of
the boundary. MRD and local linear estimates of the ATE along the boundary are also shown, as well as 95
percent pointwise confidence intervals for both sets of estimates, and simultaneous 95 percent confidence
bands for the MRD estimates.

Finally, to illustrate why heterogeneity in the CATE in a geographical RD design may
potentially be interesting, I project the MRD CATE estimates on surrounding characteristics.
In particular, for each x ∈ F, I find the mean age, voter registration status, income, and
education of individuals close to x, and regress the MRD CATE estimates τ̂(x) on these
characteristics (weighting observations by the inverse of the variance of τ̂(x)). The results
shown in Columns 2 and 3 of Appendix Table A.2 suggest that the effect of exposure to
political ads on voter turnout is negatively associated with education and unemployment, but
positively associated with poverty and age. However, given that we are unable to reject the
null hypothesis that τ̂(x) = 0 for all x ∈ F, these findings only hint at the possibility of
treatment effect heterogeneity (stronger evidence of which may surface if one had a larger
sample).

5 Conclusion

In this paper, I introduce a new method for estimating multidimensional RD and RK designs.
This estimator allows the researcher to estimate heterogeneous treatment effects, and achieves
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efficiency gains relative to the common empirical approach of analyzing each running variable
separately. I provide results on the theoretical properties of my estimator, and verify its
performance in simulations. Finally, I demonstrate the utility of my estimator in two empirical
applications. In the first application, my MRD estimation replicates the main findings of the
original analysis with greater precision, and in addition, it reveals that the effect of financial
eligibility on college enrollment is decreasing in students’ test scores. In the second empirical
application, my MRD estimates from a geographical RD setting replicate previous findings
that political advertisements seemed to have little to no effect on voter turnout in the 2008
presidential elections, and these MRD estimates also tend to be more precise and stable than
those produced by the local linear estimator.
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Appendix

A Background on Thin Plate Splines

In this section, I provide some general background on thin plate splines that may be use-
ful for discussions in subsequent sections.42 For notational simplicity, I drop the z sub-
scripts/superscripts and focus on the fitting of a single thin plate spline in this section, before
reintroducing these subscripts/superscripts in later sections when I discuss the estimators
proposed in this paper (which involve fitting multiple thin plate splines).

We can view thin plate splines as the solution to a special case of a more general problem.
Let H be a reproducing kernel Hilbert space (RKHS), which is a Hilbert space of functions
on Ω such that for each x ∈ Ω, the evaluation functional Lx defined by Lxu = u(x) for any
u ∈ H is a bounded linear functional. By the Rietz representation theorem, for each x ∈ Ω,
there exists an element Rx in H such that:

Lxu = ⟨Rx, u⟩ = u(x), u ∈ H,

which we will call the Rietz representer of Lx, where ⟨·, ·⟩ denotes the inner product associated
with H. We also have a (unique positive definite) reproducing kernel R associated with H
such that:

⟨Rs, Rt⟩ = ⟨R(s, ·), R(t, ·)⟩ = R(s, t).

We can decompose the RKHS H into:

H = H0 ⊕H1,

where H0 is the null space of H, and dim(H0) = M . Denoting Li ≡ Lxi for i ∈ {1, ..., n}, and
letting P1 be the orthogonal projection of u ∈ H onto H1, we consider the following problem:

gλ ≡ min
u∈H

n∑
i=1

(yi − Liu)
2 + λ||P1u||2.

Thin plate splines are a special case of this minimization problem, where we consider an
RKHS with H = Hm(Ω) being the Sobolev space containing functions with bounded weak
derivatives up to order m. In addition, assume that Ω ⊆ Rd, and 2m > d. For any u ∈ H, we
can write:

u = u0 + u1,

42For an in-depth introduction to thin plate splines, see Wahba (1990).
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where u0 ∈ H0 and u1 ∈ H1. Since the null space H0 is spanned by M =

(
m+ d− 1

d

)
linearly

independent polynomials (φ1, ..., φM ) of degree less than m, this decomposition is equivalent
to an application of the exact Taylor expansion of u, with u0 being the (m−1)th order Taylor
approximation, and u1 being the remainder term.

Letting ηi be the Rietz representer of Li, we can show that the thin plate spline problem
may be written as the solution to:

min
c,d

||Y − (Σc+ Sd)||2 + λc′Σc, (11)

where S is the n × M matrix defined by Si,ν = Liφi, Σ = {⟨ξi, ξj⟩}, and ξi = P1ηi. The
solution to this problem can be expressed as:

gλ =
M∑
ν=1

α∗
νφν +

n∑
i=1

δ∗i ξi, where:

d∗ = (S′M−1S)−1S′M−1y,

c∗ = M−1(I − S(S′M−1S)−1S′M−1)y,

M = Σ+ λI.

For notational simplicity, sometimes I also write: gλ(x) = s′(x)β, where s(x) is a K×1 vector
where K = M + n, the first M elements of which correspond to the basis functions for H0,
and the remaining terms correspond to the basis functions for H1.

The influence matrix is defined as the matrix A(λ) that satisfies:
L1gλ

...
Lngλ

 = A(λ)y.

Consider the QR decomposition of T (Dongarra, Bunch, Moler, and Stewart 1979):

T =
[
Q1 Q2

] [R
0

]
,

where Q1 is n × M , Q2 is n × (n − M), Q is orthogonal, and R is upper triangular, with
T ′Q = 0. Then, an explicit formula for A(λ) is given by:

A(λ) = I − λQ2(Q
′
2MQ2)

−1Q′
2y.
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B Testing Hypotheses About the CATE Function

The construction of simultaneous confidence bands allows us to test various null hypotheses
about the CATE function τ(x), including:

• H0 : τ(x) = 0 for all x ∈ F.

• H0 : τ(x) = τ̄ for all x ∈ F, for some constant τ̄ .

• H0 : τ(x) is a linear function of x, for x ∈ F.

Denote the simultaneous confidence band of level α for {τ(x)}x∈F as:

{C̄(τ̂(x), ŝe(τ̂(x)), 1− α,F)}x∈F.

It is clear how to test the null hypothesis of whether the CATE contains zero: we can simply
check whether 0 ∈ C̄(τ̂(x), ŝe(τ̂(x)), 1 − α,F) for any x ∈ F. A p-value for this null can also
be obtained by setting the p-value as α∗, which is defined as:

α∗ ≡ inf{α|0 ∈ C̄(τ̂(x), ŝe(τ̂(x)), 1− α,F) for some x ∈ F}.

Testing the null hypothesis of constant treatment effects is relatively straightforward as
well. Recall that our confidence band takes the form:

C̄(τ̂(x), ŝe(τ̂(x)), 1− α,F) = (τ(x)− c̄1−α,Fŝe(τ̂(x)), τ(x) + c̄1−α(F)ŝe(τ̂(x))) .

An equivalent way to test whether there exists some τ̄ such that τ̄ ∈ C̄(τ̂(x), ŝe(τ̂(x)), 1−α,F)
for all x ∈ F is to check if:

sup
x∈F

{τ(x)− c̄1−α(F)ŝe(τ̂(x))} > inf
x∈F

{τ(x) + c̄1−α(F)ŝe(τ̂(x))} ,

in which case we will reject the null hypothesis at a significance level of α. We can also obtain
a p-value by computing c̄1−α(F) for different values of α, and setting the p-value as the value
of α∗ that satisfies:

sup
x∈F

{τ(x)− c̄1−α∗(F)ŝe(τ̂(x))} = inf
x∈F

{τ(x) + c̄1−α∗(F)ŝe(τ̂(x))} .

Finally, to test whether the function is linear, we can employ a grid search. For example,
suppose that the treatment frontier consists of the positive x1-axis and x2-axis. Then, to test
whether τ(x) can be written as a linear function of x1 along the positive x1-axis, we can choose
grids for the constant a1 ∈ A1 ⊆ C̄(τ̂(0, 0), ŝe(τ̂(0, 0)), 1 − α,F) and slope b1 ∈ B1, and test
whether a1 + b1x1 ∈ C̄(τ̂(x1, 0), ŝe(τ̂(x1, 0)), 1− α,F) for all x1, and similarly for the x2-axis.
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Empirical applications of some of these tests can be found in Section 4. For example, tests
for the validity of the research design — using predetermined variables as the outcome variable
and the multidimensional McCrary test — are essentially tests of null “placebo” treatment
effects along the treatment frontier.

A more interesting application was when we tested the hypothesis of whether the treatment
effect of financial aid eligibility on college enrollment is increasing or decreasing in test scores
(respectively, the inverse wealth index) for students at the wealth threshold with qualifying
test scores, F2 (respectively, for students at the test score threshold with qualifying wealth,
F1). Appendix Figure A.10 provides a visual illustration of how the p-value for these tests are
constructed, by plotting:

inf
x
{τ(x) + c̄1−α(Fd)ŝe(τ̂(x))} − sup

x
{τ(x)− c̄1−α(Fd)ŝe(τ̂(x))} ,

as a function α, for α between zero and one. If the curve crosses zero, the p-value is given by
the value of α at this intersection; if instead the curve is entirely above (respectively, below)
zero, then the p-value is equal to one (zero).

C Ridge Formulation of MRD and MRK Estimators

For notational simplicity, I will suppress the dependence of various terms on x throughout
most of this section.

C.1 Sharp MRD Estimation as Ridge Regression

To compute τ̂(x), recall that we are fitting two thin plate splines over Ω1 and Ω0 separately,
and evaluating the difference at x ∈ F. Now consider the formulation of the thin plate spline
problem given in equation (11) but applied separately to observations in regions Ω1 and Ω0,
and where we translate the coordinates by x. Here, we are solving two problems:

min
cz ,dz

||Yz − (Σzcz + Szdz)||2 + λzc
′
zΣzcz,

for z = 0, 1. Let us denote X̌z as the nz × Kz matrix given by X̌z ≡
[
Sz Σz

]
, and let

β̌z ≡ (d′z, c
′
z), and Σ̌z ≡

[
0M×M 0M×nz

0nz×M Σz

]
. Then, we can rewrite the problem as:

min
β̌z

||Yz − X̌zβ̌z||2 + λrβ̌
′
zΣ̌zβ̌

′
z,
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and simple algebra reveals that the solution is given by:

β̌∗
r =

(
X̌ ′

zX̌z + λzΣ̌z

)−1
X̌ ′

zYz.

Now, define:

X(x)i ≡



1

Wi

Zi · s1,2(xi − x)
...

Zi · s1,K1(xi − x)

(1− Zi) · s0,2(xi − x)
...

(1− Zi) · s0,K0(xi − x)


∈ RK1+K0 ,

M ≡


0 0

0 0

0(K1−1)×1 Σ̌∼1
1

0(K0−1)×1 Σ̌∼1
0

 ∈ R(K1+K0)×(K1+K0),X ≡


X

′
1

...
X′

n

 ,

and consider the problem:

min
b

n∑
i=1

(yi −X′
ib)

2 + (λ1/2 ∗ b)′M(λ)(λ1/2 ∗ b),

where M(λ) is equal to M with rows 3 to K1 + 1 multiplied by λ1, and rows K1 + 2 onwards
multiplied by λ0, and:

λ1/2 ≡ (0,
√
λ1ι

′
n1
,
√

λ0ι
′
n0
)′,

where the symbol ∗ denotes element-wise multiplication, and ιnz is a vector of ones that is of
length nz.

Due to the multiplication of most elements in Xi by Zi and 1−Zi, this problem essentially
fits two thin plate splines over Ω1 and Ω0 using only observations from the corresponding
regions. The definition of λ1/2 and M(λ) ensures that the intercept and linear terms are not
penalized, and that the other basis functions for the two thin plate splines are penalized by
their respective penalty terms λ1 and λ0.

Finally, due to the recentering of the observations at x, the value of the thin plate splines
over regions Ω1 and Ω0 at x ∈ F are given by b1 + b0 and b0 respectively. Hence, τ̂(x) is the
second term in the solution vector:

β̂(x) = (X′X+M(λ))−1X′Y.

50



C.2 Fuzzy MRD Estimation as Ridge 2SLS

The argument for the formulation of fuzzy MRD as 2SLS is similar, but we additionally define:

Z(x)i ≡



1

Zi

Zi · s1,2(xi − x)
...

Zi · s1,K1(xi − x)

(1− Zi) · s0,2(xi − x)
...

(1− Zi) · s0,K0(xi − x)


∈ RK1+K0

which we use as instruments for X(x)i.
We note that the thin plate splines for the denominator of the Wald ratio (i.e., the first

stage) are solutions to the problem:

min
cz ,dz

||W⃗z − (Σzcz + Szdz)||2 + λz,hc
′
zΣzcz.

Hence, the first stage can be formulated:

min
b

n∑
i=1

(Wi −X′
ib)

2 + (λ
1/2
h ∗ b)′M(λ

1/2
h ∗ b),

where λ
1/2
h is defined similarly λ1/2 except with λz,h in place of λz, and the solution is given

by:
β̂first = (Z′Z+M(λh))

−1Z′X.

Next, we consider the “second stage” ridge regression:

min
b

n∑
i=1

(yi − X̂′
ib)

2 + (λ1/2 ∗ b)′M(λ)(λ1/2 ∗ b),

where the fitted values are given by X̂ ≡Z(Z′Z+M(λh))
−1Z′X. From this, we obtain:

β̂2SLS(x) = (X̂′X̂+M(λ))−1X̂′Y,

=(X′Z(Z′Z+M(λh))
−1Z′Z(Z′Z+M(λh))

−1Z′X+M(λ))−1X′Z(Z′Z+M(λh))
−1Z′Y,

where M(λh) is defined in the same way as M(λ), except with the penalty parameters for the
thin plate splines in the denominator λz,h in place of λz. The fuzzy MRD estimate is given
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by the second element of this solution vector.

C.3 Fuzzy MRK Estimation as Seemingly Unrelated Ridge Regression

Finally, we can formulate FMRK estimation as a seemingly unrelated ridge regression. In
particular, let us write:

X(x)FMRK
i ≡



Zi

1− Zi

Zi · s1,2(xi − x)
...

Zi · s1,K1(xi − x)

(1− Zi) · s0,2(xi − x)
...

(1− Zi) · s0,K0(xi − x)


∈ RK1+K0 ,X(x)FMRK

1 =


X(x)FMRK′

1
...

X(x)FMRK′
n

 .

Then, we can estimate the following equation:[
Y

W

]
︸ ︷︷ ︸

≡Y FMRK

=

[
XFMRK

1 0

0 XFMRK
1

]
︸ ︷︷ ︸

≡XFMRK

[
βreduced

βfirst

]
︸ ︷︷ ︸
≡βFMRK

+

[
ϵreduced

ϵfirst

]
︸ ︷︷ ︸
≡ϵFMRK

,

where we impose a ridge penalty on the parameters.
Specifically, consider the following minimization problem:

β̂MRK ≡ min
b∈R2(K0+K1)

n∑
i=1

(yi − breducedX(x)FMRK
i )2

+

n∑
i=1

(Wi − bfirstX(x)FMRK
i )2 + (λ

1/2
FMRK ∗ b)′MFMRK(λ)(λ1/2 ∗ b),

where λ
1/2
FMRK ≡ (0, 0,

√
λ1 · ι′n1

,
√
λ0 · ι′n0

, 0, 0,
√
λh,1 · ιn1 ,

√
λh,0 · ιn0)

′, and MFMRK(λ) is
equal to the block-diagonal matrix in R2(K0+K1)×2(K0+K1) with M(λ) and M(λh) on the block
diagonals. From this, we obtain the solution:

β̂FMRK(x) =
(
XFMRKXFMRK′ +MFMRK(λ)

)−1
XFMRK′Y FMRK ,

52



and we can estimate its conditional variance using:

ˆV ar(β̂FMRK(x)|XFMRK)

=(XFMRK′XFMRK +MFMRK(λ))−1XFMRK′

Ω̂FMRKXFMRK(XFMRK′XFMRK +MFMRK(λ))−1.

Now, define:

XFMRK
v,∼0 (x) ≡

(
Dvs1,∼1(0)

−Dvs0,∼1(0)

)
,

where sz,∼1(·) is equal to sz(·) with the first element removed, and partition β̂FMRK(x) into
components corresponding to the “reduced form” and “first stage” of the FMRK:

β̂FMRK(x)′ ≡
(
β̂FMRK′
reduced , β̂FMRK′

first

)
.

Also, let β̂FMRK
reduced,∼0 and β̂FMRK

first,∼0 be β̂FMRK
reduced and β̂FMRK

first respectively with the first two ele-
ments removed. Then, we can write the FMRK estimator as:

τ̂FMRK(x) =
XFMRK

v,∼0 (x)′β̂FMRK
reduced,∼0(x)

XFMRK
v,∼0 (x)′β̂FMRK

first,∼0(x)
.

Given that we have an estimate of the entire (conditional) covariance matrix of β̂FMRK(x),
we can estimate the standard error of τ̂FMRK(x) using the delta method.

D Multidimensional McCrary Test

D.1 Theory

For simplicity, let:

Ω1 = {(x1, ..., xd)|xk ∈ [0, 1) ∀k = 1, ..., d},Ω0 = (−1, 1)d\Ω1, (12)

and assume that the density of the running variables fz(x) has strictly positive density over
these supports.

Divide Ω1 and Ω0 into cubes of side length b, and denote these cubes by Cg. We define
the histogram density estimator by:

Ŷ b
z (x) =

1

nzbd

nz∑
i=1

I[Xi ∈ Cg(x)],

where Cg(x) is the cube containing x, and denote the thin plate spline fit of Ŷ b
z (Xg) as a
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function of Xg by f̂z, where Xg is the center of the cube Cg(x).
Finally, for x ∈ F, we define:

∆f(x) ≡ lim
ϵ→0+

f1(x+ ϵv)− lim
ϵ′→0+

f0(x+ ϵ′v′),

for vectors v and v′ where x+ ϵv ∈ Ω1 and x+ ϵ′v′ ∈ Ω0 for sufficiently small ϵ > 0 and ϵ′ > 0.

Proposition 8. Suppose Ω1 and Ω0 are defined as in equation (12), as well as that condition F
is satisfied and the distributions fz of the running variables satisfy fz ∈ Hm(Ωz). In addition,
suppose that the penalty parameters λz are chosen such that λz = o(n

−2m/(2m+d)
z ) and λ−1

z =

o(n
2m/d
z ), and the bin size is chosen such that b = o(n−1/2λ−d/(4m)), and b−1 = o(λ−1/2m).

Then,

1. ∆f̂z(x)−∆fz(x) →p 0.

2.
√
nλd/2m

(
∆f̂z(x)−∆fz(x)

)
→d N(0, σ2

∆f (x)) for some constant σ2
∆f (x).

3. The Bayesian confidence sets for ∆f̂z(x) have correct coverage rate asymptotically, i.e.:

Pr
(
∆fz(x) ∈ C(∆f̂z(x), ŝe(∆f̂z(x)), 1− α)

)
→ 1− α,

where:

C(∆f̂z(x), ŝe(∆f̂z(x)), 1− α) ≡[
∆f̂z(x)− q1−α/2 · ŝe

(
∆f̂z(x)

)
,∆f̂z(x) + q1−α/2 · ŝe

(
∆f̂z(x)

)]
,

and ŝe(∆f̂z(x)) is the standard error of ∆f̂z(x) based on the posterior distribution of
the thin plate spline estimates.

D.2 Simulation Example

Suppose that d = 2, X1 is distributed uniform on (−1, 1), and that X2|X1 = x1 has mean zero
but variance that depends on x1. Specifically, assume that:

X2|X1 = x1 ∼

N(0, σ2
2) x1 < 0,

Φ−1(U) · (I[U < 0]σ2 + (1− I[U ≥ 0])(a+ bx1)σ2) x1 ≥ 0,

where Φ−1 denotes the quantile function for a standard normal distribution, U is a continuous
random variable distributed uniform on (0, 1), a = 1/2, and b is the (strictly) positive solution
of the equation:

log(b+ 1/2)− log(1/2) = b.
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In other words, X2 has Gaussian distribution with constant variance σ2
2 if X1 < 0 (which

corresponds to a region that is always untreated no matter the value of X2. On the other
hand, when X1 is positive, informally if X2 “is negative” it is drawn from the negative part
of a Gaussian distribution with variance σ2

2, whereas if X2 “is positive”, it is drawn from the
positive part of a Gaussian distribution whose variance is increasing in x1.

As a result, there is a discontinuity in the multivariate density along the part of the frontier
F where x2 = 0 and x1 > 0 (which I will denote by F2). For smaller values of x1, the density
is higher on the right hand side of x2 = 0, whereas for larger values of x1, the density is higher
on the left hand side of x2 = 0. However, when plotting a single-dimensional histogram of
the running variable x2 (for values of x1 greater than zero), we are averaging over F2 and
consequently these positive and negative discontinuities “balance out”. To see this, note that
the average height of the limit of the density function from the left of F2 is (2π)−1/2σ−1

2 ,
whereas the average height of the limit of the density function from the right of F2 is also:

(2π)−1/2σ−1
2

∫ 1

0

1

a+ bx1
dx1 = (2π)−1/2σ−1

2 (1/b) (ln(a+ bx1)) |x1=1
x1=0

= (2π)−1/2σ−1
2 (1/b) (ln(b+ 1/2)− ln(1/2))

= (2π)−1/2σ−1
2 .

The simulation results from this data-generating process are shown in Appendix Figure
A.7. In panel (a), we observe that the standard McCrary test does not detect a discontinuity
in the univariate density (at the 5 percent significance level).43 On the other hand, in panel
(b) we observe that the two-dimensional “McCrary test” reveals clear discontinuities in the
multivariate density function, with a positive discontinuity for smaller values of X1 and a
negative discontinuity for larger values of X2, consistent with the DGP described above.

E Proofs

Proof of Theorem 1. If the quasi-uniform condition holds, then Theorem 1.1 in Utreras (1988)
implies that there exists constants P0,z and Q0,z such that:

E
[
|ĝz(x)− gz(x)|2j,Ωz

]
≤ P0,zλ

(m−j)/m
z |gz(x)|2m,Ω +

Q0,zν
2
z

nzλ
(2j+d)/2m
z

, (13)

43This is not a critique of the McCrary test given that it is designed to detect a discontinuity in a univariate
density function for which there is none (as the calculations above show). In fact, in failing to reject the null,
the test is working as intended.
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where | · |k,Ω denotes the Sobolev seminorm defined by:

|u|2k,Ω ≡ E

 d∑
i1,...,ik=1

∫
Ω
| ∂ku(x)

∂xi1 ...∂xik
|2dx

 ,

for λz ≤ λ0,z and nzλ
d/2m
z ≥ 1. The quasi-uniform condition holds with high probability under

condition F, so the inequality above is satisfied with probability approaching one as nz → ∞.
Taking j = 0, we obtain an expression for the MSE:

E
[∫

Ωz

|ĝz(x)− gz(x)|2dx
]
≤ P0,zλz|gz(x)|2m,Ω +

Q0ν
2
z

nzλ
d/2m
z

. (14)

From this expression, we observe that in order for E
[∫

|τ̂(x)− τ(x)|2dx
]
→ 0, we need both

λz = o(1) and nzλ
d/2m
z → ∞, which are precisely the rate conditions given in the statement

of the theorem, thus proving part 1 of the theorem.
For any x ∈ Ωz and u ∈ Hm

z (Ω), let Lz
x be the evaluation functional at x and let fz

L be
the unique Rietz representer of Lz

x so that Lz
x = ⟨·, fz

L⟩. We may choose a prior as described
in Wahba (1990) and Wood (2006) which guarantees a Gaussian posterior distribution, thus
satisfying the weak Bernstein-von Mises phenomenon (as defined in Definition 1 of Castillo
and Nickl (2013)) trivially. Moreover, the evaluation functional is linear, which combined with
the assumptions in the theorem, imply that:

βR

(
ΠLz

x
nz

◦ (θz
L(X(nz))

)−1, N(0, ||fgz ||22
)
→ 0,

for z = 0, 1 after applying Gram-Schmidt to the basis functions for the thin plate splines
estimators,44 using Theorem 3 of Castillo and Nickl (2013).45 Applying this argument to the
estimators for g0 and g1, we obtain asymptotic normality of τ̂(x) as n0 → ∞ and n1 → ∞, as
desired.

□

Proof of Proposition 2. The rate condition for λz that achieves the optimal rate of convergence
can be be easily solved for by minimizing the right-hand-side of the inequality (14) as a function

44In fact, in the case of Schoenberg spaces with equally spaced knots, one can obtain the Battle-Lemarie
wavelets by using Gram-Schmidt orthogonalization on the spline basis (Giné and Nickl 2010).

45The results in Castillo and Nickl (2013) are written for Ωz ⊆ R, but the proofs extends to the multidimen-
sional case with notational changes, so they apply to Ωz ⊆ Rd satisfying the conditions in the theorems in the
present paper. For example, the requirement in Theorem 3 of Castillo and Nickl (2013) that we are considering
functions in the Sobolev space Hs

(z) for s > 1/2, where the standard definition of Sobolev spaces is extended
to non-integer s using a wavelet-type basis. For the multidimensional case, we modify this requirement to
functions in the Sobolev space Hs

(z) for s > d/2, which guarantees that functions in this space are bounded and
continuous (Taylor 2018). This is indeed satisfied given that we required that 2m > d for the Sobolev space
Hm

z in our definition of thin plate splines.
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of λz. From this solution, we also obtain the optimal rate of convergence.
To show that λ̂GCV

m,z = O(λopt
m,z), we observe that (under the conditions of Proposition 2),

Utreras (1987) shows that the asymptotic inefficiency of the GCV choice of λz is IGCV/OPT =

1 + o(1) where λOPT is the MSE-optimal choice of λ.

□

Proof of Theorem 3. Examination of inequality (14) reveals that under the rate condition
given in the theorem for λz, the asymptotic bias (the first term on the right-hand-side) tends

to zero when ĝz(x) − gz(x) is scaled by
√
nzλ

d/2m
z . Hence, the bias term b(x) in Theorem 1

is zero, and to complete the proof, we simply need to show that the standard error ŝe(τ̂(x))

from the posterior distribution of τ̂(x) is valid. This follows from Theorem 3 of Castillo and
Nickl (2013), based on the same argument as the proof of the second part of Theorem 1.

□

Proof of Proposition 4. Suppose that the conditions in the proposition are satisfied. Then,
by the same argument as in the proof of Theorem 2, the MSE-optimal penalty parameter for
the thin plate splines of order m and m + 1 satisfy λopt

m,z = O(n
−2m/(2m+d)
z ) and λopt

m+1,z =

O(n
−2(m+1)/(2(m+1)+d)
z ) respectively. Given that 2(m+1)/(2(m+1)+ d) > 2m/(2m+ d), we

have that λopt
m+1,z = o(n

−2m/(2m+d)
z ). Finally, as noted in the proof of Proposition 2, we have

λ̂GCV
m+1,z = O(λopt

m+1,z) under the maintained assumptions, hence completing the proof.

□

Proof of Proposition 5. The proof that ∆ĝ(x) →p ∆g(x) and ∆ĥ(x) →p ∆h(x) follows
exactly as in the proof of part 1 of Theorem 1. Then, using the continuous mapping theorem
(in conjunction with Assumption 4), we obtain τ̂FMRD(x) →p τFMRD(x), as desired.

□

Proof of Theorem 6. For parts 1–4, given that the denominator ∆Dvh(x) is a known constant
(for each x ∈ F), we only need to consider the numerator for the proofs. Part 1 follows when
we use inequality (13) with j = 1. Similarly, to show part 2, we just follow the proof of
Theorem 1, noting that the derivative with respect to the direction v is a linear operator. Part
3 follows immediately if we choose λz to minimize the right-hand-side of inequality (13) with
j = 1 as a function of nz. The proof of part 4 is essentially the same as for Theorem 3 except
with j = 1 instead of j = 0.

Finally, to show part 5, we use inequality (13) with j = 1 for ĥz(x). Then, the result
follows immediately from assumption 7 and the continuous mapping theorem.

□
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Proof of Corollary 7. Combining part 3 and 4 of Theorem 6 with the inequality (13), with
j = 1 as well as m and m+ 1, we obtain the desired result.

□

Proof of Proposition 8. The proof essentially follows those of Theorems 1 and 3, the only
difference being that we need to account for the approximation error originating from the
need for an additional bandwidth choice for the histogram density estimator before applying
the standard MRD estimator to the histogram density estimates.

To show that the approximation error is negligible under the rates for the bandwidth in
the histogram density estimator given in the theorem, I first show that the error is negligible
for f̂z(x). Note that we can write:

f̂z(x)− fz(x) =
(
f̂z(x)− Ŷ b(x)

)
+
(
Ŷ b(x)− fz(x)

)
,

where the first term is the approximation error from fitting the thin plate spline, and the
second term is the approximation error from using the histogram density estimate instead of
the density itself as the outcome variable in the thin plate spline estimation.

Consistency, asymptotic normality, and required undersmoothing rates for the first term
were already studied earlier, so now we show that the approximation error from the second
term is negligible relative to the first. First, we can compute the expectation and variance of
Ŷb(x). Let D be a vector of dummy variables of length d, and writing the sum of the elements
as |D|, we have:

E[Ŷb(x)] = E

[
1

nzbd

nz∑
i=1

I[Xi ∈ Cg(x)]

]

= E
[

1

nzbd
· nz · Pr (Xi ∈ Cg(x))

]

= E

 1

bd
·

d∑
k=0

(−1)k
∑
|D|=k

Fz(x+ bD)


→ ∂dFz(x)

∂x1...∂xd
= fz(x)

where Fz is the CDF for fz, so we have consistency. The variance is given by:

V ar[Ŷb(x)] =
nzPr (Xi ∈ Cg(x)) [1− Pr (Xi ∈ Cg(x))]

n2
zb

2d

= E[Ŷb(x)] ·
1− Pr (Xi ∈ Cg(x))

nzbd
,

where 1− Pr (Xi ∈ Cg(x)) → 1 as b → 0.
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Now, we consider
√
λd/2mn

(
Ŷb(x)− fz(x)

)
. First, taking the expectation:

E
[√

nzλd/2m
(
Ŷb(x)− fz(x)

)]
=
√

nzλd/2m (Mb+ o(b)) ,

we find that the expectation goes to zero if and only if b = o(n−1/2λ−d/4m), as is assumed in
the proposition. Turning next to the variance, we find that:

V ar
[√

nzλd/2m
(
Ŷb(x)− fz(x)

)]
= λd/2mnzE[Ŷb(x)] ·

1− Pr (Xi ∈ Cg(x))

nzbd

= nzλ
d/2m

(
O(n−1

z b−d)
)

= O(λd/2mb−d),

and this tends to zero if and only if b tends to zero at a slower rate than λ1/2m, i.e., b−1 =

o(λ−1/2m), which is also a condition listed in the proposition. Therefore, the approximation
error from using Ŷ b(x) instead of fz(x) is negligible relative to the approximation error from
the thin plate spline estimation. Finally, this argument applies to both f̂1(x) and f̂0(x), so
the same applies to ∆f̂z(x), as desired.

□

F An Approximation of Thin Plate Splines

In practice, fitting thin plate splines can be computationally intensive in multivariate cases.
Hence, for implementation, I approximate thin plate splines with thin plate regression splines
(TPRS), which I define in this section. The description in this section borrows heavily from
Wood (2003, 2006).

For simplicity of exposition, I assume for this discussion that no two observations have an
identical combination of covariate values, and I use yz to denote the vector of outcome variable
values for observations lying in Ωz. Recall that a thin plate spline ĝz(x) is the solution to the
following minimization problem:

min
u∈H

nz∑
i=1

(yz,i − u(xzi ))
2 + λJmd(u),

where the definition Jmd can be found in the main text. Assuming 2m > d is satisfied, one
way to write the solution is:

ĝz(x) =

nz∑
i=1

δ∗z,iηmd(||x− xzi ||) +
M∑
j=1

α∗
j,zϕj(x),
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where the orthogonality constraint T ′
zδ

∗
z = 0 is satisfied, with Tz defined by (Tz)ij ≡ ϕj(x

z
i ),

M ≡
(
m+d−1

d

)
, and the function ηmd is defined by:

ηmd(q) =



(−1)m+1+d/2

22m−1πd/2(m− 1)!(m− d/2)!
q2m−d log(q) if d is even

Γ(d/2−m)

22mπd/2(m− 1)!
q2m−d if d is odd.

The M functions ϕj are linearly independent polynomials that span the space of polynomials
of degree less than m, and are thus not penalized at all by the penalty term Jmd.

Now, defining Ez by Ez
ij ≡ ηmd(||xzi − xzj ||), the minimization problem that defines the

thin plate spline can alternatively be written as:

min
δz ,αz

||yz − Ezδz − Tzαz||2 + λδ′zEzδz s.t. T ′
zδz = 0. (15)

Leaving the basis for the unpenalized functions untouched, the TPRS focuses on truncating
the basis for the penalized terms in a way that perturbs the minimization problem as little as
possible. To elaborate, let kz be the basis dimension for the TPRS chosen by the user. Instead
of searching for the value of δz over the entire space Rnz that (along with αz) minimizes the
objective function and satisfies the orthogonality constraint, the minimization problem that
defines the TPRS only considers possible values of δz within a kz-dimensional subspace, Wz

of Rnz .
To make precise how the subspace Wz is chosen for TPRS (for a given value of kz), I

introduce the following notation. Given a kz-dimensional subspace Wz of Rnz , let Γkz be an
nz × kz matrix of rank kz with columns that form an orthonormal basis for Wz. The TPRS
minimization problem can then be written as:

min
δzk,αz

||yz − EzΓkzδ
r
kz − Tzαz||2 + λδ

′
kr,zΓ

′
kzEΓkzδ

z
kr s.t. TzΓkzδ

z
kz = 0

where δzkz ∈ Rkz .
In order to express this in a form closer to that of the minimization problem for the thin

plate spline in (15), I define the nz×nz matrices Ẽkz ≡ EzΓkzΓ
′
kz

and Êkz ≡ ΓkzΓ
′
kzEzΓkzΓ

′
kz

.
This allows me to write the TPRS minimization problem as:

min
δz ,αz

||yz − Ẽzδz − Tzαz||2 + λδ′zÊkzδr s.t. T ′
zδz = 0, (16)

since δz ∈ Wz if and only if Γkzδ
z
kz

= δz for some δzkz ∈ Rkz , by definition of Wz.
Now, the goal of TPRS is to choose Wz, or equivalently Γkz , so that replacing the matrix
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Ez in problem (15) by Ẽkz and Êkz in problem (16) perturbs problem (15) as little as possible.
Unfortunately, there is no kz-dimensional subspace that minimizes the change in objective
value for all possible values of δz. Hence, TPRS instead chooses Γkz based on a minimax
criterion, i.e., to minimize the worst possible change in objective value. In other words, Γkz is
taken to be the orthonormal basis matrix of rank kz in Rnz×kz that simultaneously minimizes:

ϵkz ≡ max
δz ̸=0

{
||(Ez − Ẽkz)δz||

||δz||2

}
and ekz ≡ max

δz

{
δ′z||(Ez − Êkz)δz||

||δz||2

}
,

where ϵk and ek correspond to the worst possible change in the least squares and penalty terms
respectively.

It turns out that the solution that simultaneously minimizes ϵkz and ekz is a truncated
eigenbasis of Ez. To elaborate, write the spectral decomposition of Ez as Ez = UzDzU

′
z where

Dz is the diagonal matrix containing the eigenvalues of Ez, arranged in decreasing order of
magnitude, i.e. |Dz

ii| ≥ |Dz
i+1,i+1| for i = 1, ..., nz − 1.46 Then, the solution Γkz is the first

kz columns of Uz, appropriately scaled so that the columns are orthonormal. One may also
verify that this solution results in Ẽkz = Êkz .

G Details on Standard Error Calculations

For concreteness, in this section I discuss the standard error calculations for the sharp MRD
case, but the procedure can be adapted for fuzzy MRD and MRK. Recall that the MRD
estimate of the CATE is based on the difference between two fitted surfaces:

τ̂(x) = ĝ1(x)− ĝ0(x),

where ĝ1 and ĝ0 were estimated based on observations in the treated and untreated regions
respectively. Generally, these functions can be written in the following form:

ĝz(x) =

Kz∑
k=1

β̂z,ksz,k(x),

where sz,k(x) is the kth basis function of the thin plate spline that is fit to the region where
individuals receive treatment z. Adopting a Bayesian perspective, for appropriately chosen
priors, the parameter vectors β̂1,k and β̂0,k both have Gaussian posterior distributions, so let
us denote their posterior covariance matrices by Σ1 and Σ0 respectively.47 Also, if we assume
i.i.d. error terms, then the fact that we fit ĝ1 and ĝ0 using separate data implies that the two
parameter vectors are independent from each other, so that the entire posterior covariance

46This decomposition is possible because Ez is a real symmetric matrix by definition.
47See Wahba (1990) and Wood (2006) for choices of priors that lead to these posterior distributions.
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matrix Σ is block diagonal with diagonal blocks Σ1 and Σ0.
Based on the discussion above, standard error estimates of the CATE estimates at various

points of the treatment frontier can be computed. Specifically, for x ∈ F, we have:

ˆV ar (τ̂m(x)) = V ar

(
K1∑
k=1

β̂1,ks1,k(x)−
K0∑
k=1

β̂0,,ks0,k(x)

)

= V ar

(
K1∑
k=1

β̂1,ks1,k(x)

)
+ V ar

(
K0∑
k=1

β̂0,ks0,k(x)

)
= s1(x)

′Σ̂1s1(x) + s0(x)
′Σ̂0s0(x).

Moreover, for a finite collection of points {xg}g∈G , xg ∈ F, we can compute an estimate of the
covariance matrix for the CATE at these points. In particular, we have:

ˆV ar ({τ̂m(xg)})g,g′ = s1(x
g)′Σ̂1s1(x

g′) + s0(x
g)′Σ̂0s0(x

g′),

which can be written in matrix form:

ˆV ar ({τ̂m(xg)}) = S′
1Σ̂1S1 + S′

0Σ̂0S0,

where Sz is the K × |G| matrix with (k, g)th element equal to sz,k(x
g).

Suppose we want to compute the average treatment effect over a subset of the treatment
frontier F. This can be done via numerical integration based on a discrete grid of points
{xg}g∈G , xg ∈ F. If we want to average the treatment effect using deterministic weights
w1, ..., w|G| that are positive and sum to one (e.g. based on some known counterfactual pop-
ulation of interest), then we can simply compute the average effect as

∑
g∈G wg τ̂(x

g), and
estimate the variance as w′ ˆV ar ({τ̂(xg)})w.

If we instead want to compute the average effect over the population (from which the
estimation sample is randomly drawn from), but the distribution of the running variables for
this population is unknown, then we need to estimate the density. Many methods for density
estimation yield estimates {f̂(xg)}g∈G that are asymptotically normal, with some covariance
matrix Σ̂f . To use these as weights, we need to scale them so that they sum to one. Hence,
we can estimate the average treatment effect using:

∑
g∈G

f̂(xg)∑
g′∈G f̂(x

g′)
τ̂(xg).

Denoting Σ̂τ ≡ ˆV ar ({τ̂m(xg)}g∈G), and assuming independence between the estimates {τ̂(xg)}g∈G
and {f̂(xg)}g∈G , we can obtain an estimate of the asymptotic variance of average treatment
effect estimate using the delta method.
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Specifically, consider the function:

t(f, τ) ≡
∑
g∈G

fg∑
g′∈G f

g′
τ g,

for f ∈ R|G|
+ , τ ∈ R|G|. The gradient of this function is:

∇t(τ, f) =

(
Dτ t(τ, f)

Df t(τ, f)

)
,

where:

Dτ t(τ, f) =


f1∑
g∈G f

g

...
f |G|∑
g∈G f

g

 , Df t(τ, f) =



∑
g∈G

fg(∑
g′∈G f

g′
)2 (τ1 − τ g

)
...∑

g∈G
fg(∑

g′∈G f
g′
)2 (τ |G| − τ g

)


.

So, we can estimate the asymptotic variance of the average treatment effect estimate over F
via the delta method using the following formula:

∇t(τ̂ , f̂)′

(
Σ̂τ 0

0 Σ̂f

)
∇t(τ̂ , f̂) = ∇t(τ̂ , f̂)′

(
Σ̂τDτ t(τ̂ , f̂)

Σ̂fDf t(τ, f)

)
= Df t(τ̂ , f̂)

′Σ̂fDf t(τ̂ , f̂) +Dτ t(τ̂ , f̂)
′Σ̂τDτ t(τ̂ , f̂).

More generally, this same methodology can be used to estimate average treatment effects over
other subsets of the treatment frontier F (using estimates of the density corresponding to
those subsets), and to obtain standard errors for these estimates. Furthermore, if we were
interested in the weighted average treatment effect over the treatment frontier with respect to
counterfactual distributions of individuals (e.g., f∗ instead of f), then we need not estimate
f and account for this uncertainty when estimating the standard error.

Finally, we assumed independence between the estimates {τ̂m(xg)}g∈G and {f̂(xg)}g∈G
in our derivation of the standard error for the average CATE estimate above. A potential
concern with this assumption is that individuals may have varying tastes for treatment based
on unobservables and may exert differential amounts of effort in manipulating their running
variables in order to receive treatment, thus leading to a correlation between the density
estimates and the CATE estimates. However, such a scenario is somewhat unlikely given the
local randomization interpretation of RD designs (Lee 2008), which posits that individuals
have imprecise control over the running variables.
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Appendix Figures and Tables

Figure A.1: Treatment Frontiers for MRDK and MRK Designs

(a) Treatment Frontier
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(b) Treatment Frontier for MRK
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Notes: Panel B shows the treatment frontier F as well as regions where individuals are or are not subject to
the cap (Ω1 and Ω0 respectively) for the MRK design.
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Figure A.2: MRD Estimates of Heterogeneous Treatment Effects in the Simulations
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Notes: The figures show MRD estimates of the CATE from the DGP with heterogeneous treatment effects,
separately from the portion of the frontier F where X1i = 0 in the left figure, and the portion where X2i = 0 in
the right figure. The true tratment effect is shown as a solid red line. Error bars indicate 95 percent pointwise
confidence intervals. Standard errors for the slope coefficients for the WLS fits are computed via bootstrap. Standard
errors for the slope coefficients for FGLS fits are analytic standard errors.

Figure A.3: Histograms of Running Variables

(a) Normalized SABER 11 Score
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(b) Normalized SISBEN Wealth Index
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Notes: The figure shows univariate histograms of the running variables.
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Figure A.4: Histograms of Wealth Index for Students from Different Quartiles of Test Scores

(a) 1st Quartile
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Notes: The figures show histograms of the inverse wealth index, for observations from different quartiles of test
scores. The threshold is shown by the vertical line.

Figure A.5: Histograms of Test Scores for Students from Different Quartiles of Wealth Index

(a) 1st Quartile
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(b) 2nd Quartile
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Notes: The figures show histograms of test scores, for observations from different quartiles of the inverse wealth
index. The threshold is shown by the vertical line.
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Figure A.6: Contour Plot for Joint Distribution of Test Scores and Inverse Wealth Index
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Notes: The figure shows a contour plot from a two-dimensional histogram of test scores and the inverse wealth
index. The treatment frontier F is shown by the solid lines.
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Figure A.7: Simulation Results for Discontinuity in the Multivariate Density
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(a) Single-Dimensional McCrary Test
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(b) Two-Dimensional McCrary Test

Notes: The first figure shows the result from a single-dimensional McCrary test from the data-generating
process described in Appendix section D, whereas the second figure shows the results from the two-dimensional
McCrary test described in the same section. The shaded regions in light grey and dark grey in the second
figure represent the 95 percent pointwise confidence intervals and 95 percent simultaneous confidence bands
respectively.
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Figure A.8: Effect of the SPP on Enrollment as a Function of Test Scores: Different Types of
Colleges

(a) High Quality College
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Notes: The figures show MRD estimates of the CATE on the effect of financial aid on the probability of
enrollment in different types of colleges as a function of test scores, for students with inverse wealth indices
at the cutoff. The shaded regions in light grey and dark grey represent the 95 percent pointwise confidence
intervals and 95 percent simultaneous confidence bands respectively.
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Figure A.9: Effect of the SPP on Enrollment as a Function of Inverse Wealth Index: Different
Types of Colleges

(a) High Quality College

Slope = −0.0130.40

0.45

0.50

0.55

0.60

0 1 2 3
Inverse Wealth Index

(b) High Quality Private College

Slope = −0.020
0.40

0.45

0.50

0.55

0.60

0 1 2 3
Inverse Wealth Index

(c) High Quality Public College

Slope = 0.009
−0.06

−0.04

−0.02

0.00

0.02

0 1 2 3
Inverse Wealth Index

(d) Low Quality College

Slope = 0.003

−0.18

−0.15

−0.12

−0.09

0 1 2 3
Inverse Wealth Index

(e) Low Quality Private College

Slope = 0.006

−0.09

−0.07

−0.05

0 1 2 3
Inverse Wealth Index

(f) Low Quality Public College

Slope = −0.002
−0.125

−0.100

−0.075

−0.050

−0.025

0 1 2 3
Inverse Wealth Index

Notes: The figures show MRD estimates of the CATE on the effect of financial aid on the probability of
enrollment in different types of colleges as a function of the inverse wealth index, for students with test scores
at the cutoff. The shaded regions in light grey and dark grey represent the 95 percent pointwise confidence
intervals and 95 percent simultaneous confidence bands respectively.
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Figure A.10: Tests of Constant Treatment Effects

(a) H0: τ(x) is Constant in Test Scores for all x ∈ F
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(b) H0: τ(x) is Constant in Wealth for all x ∈ F
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Notes: The figures plot infx {τ(x) + c̄1−α(Fd)ŝe(τ̂(x))}− supx {τ(x)− c̄1−α(Fd)ŝe(τ̂(x))} as a function of α for
values of x in the segment of the treatment frontier corresponding to the wealth threshold in panel (a), and
for values of x in the segment in the corresponding to the test score threshold in panel (b).
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Table A.1: MRD Simulation Results: Pointwise Confidence Intervals and Simultaneous Confidence Bands

Pointwise (Analytic) Pointwise (Bootstrap) Simultaneous Confidence Bands

MRD Estimator DGP Coverage Length Coverage Length Coverage Length
MSE-Optimal Constant TE 0.94 0.318 0.95 0.321 0.99 0.851
Bias-Corrected Constant TE 0.94 0.329 0.97 0.356 0.99 0.893
Undersmoothing Constant TE 0.94 0.333 0.94 0.337 0.99 0.911
MSE-Optimal Heterogeneous TE 0.927 0.498 0.935 0.508 0.99 0.851
Bias-Corrected Heterogeneous TE 0.922 0.522 0.959 0.586 0.99 0.893
Undersmoothing Heterogeneous TE 0.930 0.532 0.935 0.544 0.99 0.911

Pointwise (Analytic) Pointwise (Bootstrap) Simultaneous Confidence Bands

MRD Estimator DGP Coverage Length Coverage Length Coverage Length
MSE-Optimal Constant TE 0.95 0.320 0.95 0.323 0.99 0.858
Bias-Corrected Constant TE 0.95 0.331 0.96 0.360 0.99 0.901
Undersmoothing Constant TE 0.95 0.335 0.95 0.340 0.99 0.918
MSE-Optimal Heterogeneous TE 0.944 0.502 0.948 0.510 0.99 0.858
Bias-Corrected Heterogeneous TE 0.942 0.527 0.957 0.589 0.99 0.899
Undersmoothing Heterogeneous TE 0.945 0.536 0.945 0.547 0.99 0.917

Panel A. Estimates of the Treatment Effect (TE) Over {X 1=0, X 2≥0}

Panel B. Estimates of the Treatment Effect (TE) Over {X 1≥0, X 2=0}

Notes: Three versions of the MRD estimator are considered in these simulations: an estimator using the MSE-optimal choice of penalty parameter for the thin plate regression splines (TPRS), a bias-
corrected estimator using the MSE-optimal penalty parameter from higher-order TPRS, and an undersmoothed estimator using half of the MSE-optimal penalty parameter. The results shown in this 
table are based on 100 realizations of the DGP with either constant or heterogeneous treatment effects. Analytic standard errors are based on the posterior distribution of the thin plate spline 
estimates, whereas bootstrap confidence intervals are constructed using nonparametric bootstrap. Pointwise confidence intervals and simultaneous confidence bands are based on a 5 percent 
significance level. See text for more details on these simulations.
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Table A.2: Heterogeneity in the Effect of Political Ads on Voter Turnout

Turnout

(1) (2) (3)
Education (Years) 0.005 -0.111*** -0.066**

(0.007) (0.036) (0.032)
Unemployment 0.383* -11.085*** -9.598***

(0.198) (1.185) (1.023)
Poverty 0.184* 2.688*** 2.500***

(0.125) (0.618) (0.577)
Income (in thousands) 0.001*** 0.000 -0.001

(0.000) (0.001) (0.001)
Age 0.010*** 0.001** 0.001**

(0.000) (0.000) (0.000)
Voter Registration 0.170*** 0.050 0.074*

(0.015) (0.061) (0.064)
Constant -0.111* 1.923*** 1.228**

(0.105) (0.538) (0.478)

Number of Observations 24,460 89 89

Effect of Ads on
Turnout

Effect of Ads on
Turnout (Weighted)

Notes: The first two columns are OLS regressions, and the third column is a weighted least squares regression with weights equal to the 
inverse of the variance of the MRD CATE estimates. Standard errors are shown in parentheses.
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