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Abstract

Selection on unobservables is an important concern for causal inference in observational studies,

and accordingly, previous papers have developed methods for sensitivity analysis for OLS, binary

choice models, instrumental variables, and movers designs. In this paper, I develop methods for

sensitivity analysis for a setting that has not been previously studied — discrete choice models. In

particular, I derive bounds for the omitted variables bias under an assumption about how much the

consumer values the omitted variable(s) relative to the included control variables, and about the

relationship between the omitted variable and the variable of interest. I provide theoretical results

for my bounding procedure, and demonstrate its performance in simulations. Finally, I show in

several empirical applications that my procedure produces economically meaningful bounds.

1 Introduction

Concerns over selection on unobservables are common in most observational studies in economics.

While the credibility revolution has led to the development of many quasi-experimental methods aimed

at overcoming these challenges (Angrist and Pischke 2010), there remains settings with important

economic questions without quasi-experimental variation in the variable of interest, so researchers

have little choice other than to rely on observational methods. Moreover,

Accordingly, a number of papers have developed methods for sensitivity analysis for OLS (Imbens

2003; Altonji, Elder, and Taber 2005; Oster 2019; Cinelli and Hazlett 2020; Diegert, Masten and

Poirier 2022; Masten and Poirier 2023), instrumental variables (Conley, Hansen, and Rossi 2012;

Nevo and Rosen 2012), movers designs (Finkelstein, Gentzkow, and Williams 2021), binary choice

models (Rosenbaum and Rubin 1983; Ding and VanderWeele 2016; VanderWeele and Ding 2017),

and structural methods (Andrews, Gentzkow, and Shapiro 2020). With the exception of Andrews,

I am very grateful to Alberto Abadie and Whitney Newey for their valuable comments.
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Gentzkow, and Shapiro (who focus on a somewhat different problem), these papers typically bound

the omitted variables bias based on two assumptions: (i) the relationship between the omitted variable

with the outcome, and (ii) the relationship between the omitted variable and the variable of interest.

In this paper, I develop methods sensitivity analysis for a commonly used model that is more

“structural” than those considered in the aforementioned papers that is nonetheless commonly used

in economic analysis: discrete choice models (Nevo and Whinston 2010). Specifically, I consider a

random utility model, where consumers choose between different products. The utility for consumer i

if she chooses product j is given by:

uij = βxij + αwij +

K∑
k=1

δkz
k
ij + ϵij , ϵ ⊥ (xij , wij , z

′
ij)

′,

and she chooses the product that gives her the highest utility, j∗ = argminj{uij}.

Similar to previous papers on sensitivity analysis, we are interested on the “effect” β of a variable

of interest xij , but since a scale normalization is required for utility, it makes more sense to consider

the marginal rate of subsitution (MRS) between xij and another variable wij . For example, if wij is

price, then β/α represents the consumers’ willingness-to-pay for the characteristic xij . We are able to

estimate β and α consistently if we include all of the controls zij , but the worry is that some of the

zkij ’s are not observed, in which case we may have omitted variables bias (OVB).

There are several notable differences between this random utility model that the more “reduced

form” models considered in previous studies on sensitivity analysis. First, the “left hand side variable”

in the equation of interest — utility — is unobserved, unlike the outcome variable in OLS and IV.1 This

is problematic because sensitivity analysis in previous papers typically require an assumption related

to the partial R2 from a hypothetical regression of the outcome variable on the omitted variable,

and such an assumption makes less sense when the outcome variable is latent (unobserved). To deal

with this, I replace this hypothetical R2 assumption with an assumption about how much more the

consumer values the omitted variable, relative to the included covariates. An appealing feature about

this assumption is that it has a clear economic interpretation, whereas the R2 assumption only describes

a statistical relationship.

Second, there is not always a convenient exact formula for the OVB (unlike OLS). So, although

discussions regarding the OVB in discrete choice models often invoke intuitions from the OLS case, we
1This is similar to the latent index model for binary choice. However, there is only a single equation per observation

in binary choice, whereas in discrete choice settings where a consumer is choosing between J products, there are either
J − 1 or J equations per observation (consumer), depending on whether or not there is an outside option.
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need to formalize these intuitions when deriving precise results on the possible magnitudes of OVB.

I do so by first considering a very specific parametric setting where the observed and unobserved

covariates as well as the error terms come from a Gaussian distribtion, which allows me to derive exact

formulas for the OVB. I then show that the OVB formula holds asymptotically under more general

distributions for the covariates, and under arbitrary error distributions.

Third, as mentioned earlier, we are interested in the ratio of two coefficients, unlike in OLS and

IV settings (where there is no scaling variable). We may potentially be concerned that the scaling

variable wij may likewise suffer from omitted variables bias, so in my sensitivity analysis I also derive

bounds that account for possible OVB for the scaling variable.

My sensitivity analysis derives bounds on the omitted variables bias for the coefficient of interest

β/α based on two main assumptions. First, the researcher needs to make an assumption about how

many times more the consumer values the omitted characteristic relative to the included control char-

acteristics (M). As mentioned above, this is analogous to the assumption in sensitivity analysis in

OLS of the partial R2 from a hypothetical regression of the outcome on the omitted variable.

Second, the researcher can make an assumption on the maximum R2 from a regression of the

variable of interest xij on all of the controls zij (observe and unobserved) whihc we will call R2
max,x,

and similarly for wij if we allow for possible endogeneity in the scaling variable. This second assumption

is “optional”, in that we can still obtain bounds without it (by essentially assuming the “worst case

scenario” of an R2 infinitesimally close to one), although we can obtain a tighter bound if the researcher

is willing to make the R2 assumption. Variants of this assumption are typically also made in sensitivity

analysis for OLS — for example, this is closely related to what Oster (2019) calls the “proportional

selection relationship”.

My sensitivity analysis can be used by researchers in at least two ways. First, the researcher may

have strong priors about what M and R2
x,max are, in which case she can compute the identified set (i.e.,

bounds) for β/α under these assumed assumed values of M and R2
x,max. Alternatively, the researcher

can consider a “test” of whether β/α is equal to a certain value τ∗, e.g., zero, or some other value

predicted by ecconomic theory (which we can think of as the null hypothesis). We can then derive the

set of values for (M,R2
max) for which OVB can explain the discrepancy between the estimate β̂/α̂ and

the value given by the null hypothesis τ∗. Based on contextual knowledge, the researcher can then

determine whether these values of M and R2
max are plausible.

This paper contributes to a large literature on sensitivity analysis, both in economics and outside
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of it. However, most of the literature in economics has focused on OLS (Imbens 2003; Altonji, Elder,

and Taber 2005; Oster 2019; Cinelli and Hazlett 2020; Diegert, Masten and Poirier 2022; Masten and

Poirier 2023), and instrumental variables settings (Conley, Hansen, and Rossi 2012; Nevo and Rosen

2012), so this paper is the first (to the best of my knowledge) to consider sensitivity analysis in discrete

choice settings.

Outside of economics, Ding and VanderWeele (2016) and VanderWeele and Ding (2017) also con-

sider sensitivity analysis for choice models. However, their assumptions are formulated in terms of

relative risks, which may be natural in certain settings (e.g., epedemiology), but are typically harder

to interpret in economics. Moreover, their bounding procedure is most readily applied to cases with

binary outcomes and becomes unwieldy if one tries to extend it to many unordered categorical out-

comes, which is the setting for discrete choice models. By contrast, the assumptions for my bounding

procedure do not depend on the number of categories (products).

This paper proceeds as follows. In section 2, I consider a simplied version of the model to pro-

vide intuition, before providing more general theoretical results in section 3. In section 4, I present

simulation evidence on the performance of my bounding procedure, and in section 5, I provide empir-

ical applications which show that my procedure provides economically meaningful bounds. Section 6

concludes.

2 Simplified Model with Exogenous Scaling Variable

In this section, I consider a simplified model where we assume that the scaling variable is exogenous,

in order to build intuition. The general version of the model is presented in section 3.

2.1 Setup

There are N consumers (indexed by i) are choosing between J ≥ 2 products (indexed by j). We assume

that there is no outside option, but the results all carry over to the case with an outside option, with

slight notational changes. Suppose that consumer i’s indirect utility from choosing product j is given

by:

uij = βxij + αwij +

K∑
k=1

δkz
k
ij + ϵij , (1)

α ̸= 0, E[ϵij ] = 0, V ar(xij) = V ar(wij) = V ar(zkij) = V ar(ϵij) = 1 ∀k,

ϵij ⊥ (xij , wij , z
1
ij , ..., z

K
ij )

′.
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The researcher wants to learn consumers’ preferences for the variable xij , which could be a product

characteristic, for example.2 The magnitude of the coefficient on xij , β alone is difficult to interpret,

since the scale normalization for the utility is arbitary. Hence, we assume there is a scaling variable

wij , so the quantity of interest to the researcher is β/α, which tells us how much the consumer values

xij relative to wij (i.e., the MRS between xij and wij). For example, if wij is the price of j, then β/α

represents consumers’ willing-to-pay for xij .

There are additional covariates z1ij , ...z
K
ij , that are not of economic interest, but may need to be

controlled for in order for the estimate of β/α to be consistent, i.e., to avoid OVB; however, the

researcher observes a subset of these controls z1ij , ..., zLij , L < K. Without loss of generality, we assume

that there is a single omitted variable, i.e., K = L + 1, because otherwise, we can always consider

the “composite” omitted variable given by
∑K

k=L+1 δkz
k
ij . Also without loss of generality, assume that

δk ≥ 0 for all k (otherwise, we can multiply zkij by −1), and that δl > 0 for some l ∈ {1, ..., L}.

Let us denote the estimate of β/α obtained from controlling for none of the zlij ’s, and only for

z1ij , ..., z
L
ij by β̌/α̌ and β̂/α̂ respectively. In general, both of these estimates may suffer from OVB, so

in this paper I derive bounds for the true parameter β/α based only on parameters identified in the

data. To derive these bounds, I need to make several assumptions, which I state and discuss below.

Assumption D (Preferences for Omitted Variables Relative to Included Controls). Assume that

consumers value the omitted variable at most M times more than the included controls:

δK ≤ M

L∑
l=1

δl. (2)

Assumption R0 (R2 from a regression of xij on all the zkij’s). Assume that the R2 from a regression

of xij on z1ij , ..., .z
K
ij is at most R2

x,max ≤ 1.

Remark 1. Assumption D is the most important assumption for deriving bounds for the OVB, and the

value of M should be chosen based on contextual knowledge (noting that all the zkij are standardized).

Alternatively, suppose that the researcher wants to test whether the discrepancy between the estimate

β̂/α̂ and some target value τ∗ (which need not be zero) can be explained by OVB. Then, we can

compute the minimum value of M required so that that OVB can completely explain this discrepancy.

Remark 2. Similar to M , the value of R2
x,max should be specified based on contextual knowledge.

However, we can still derive bounds without the researcher making an assumption on R2
x,max, since

2This variable must vary across products, since a variable that varies only across consumers affects the consumer’s
utility for all products in their choice set equally, and is thus not identified.
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this corresponds to the most conservative assumption would be to assume that R2
x,max = 1, although

tighter bounds can be obtained if one assumes a smaller value of R2
x,max.

Remark 3. Instead of assuming a value for R2
x,max, we can equivalently assume that the R2 from a

regression including all controls (denoted R2
x,all) explains is at most Mx,R times the R2 from a regression

of xij on z1ij , ..., z
L
ij (denoted R2

x,observed), whether this latter R2 is identified in the data. This choice of

Mx,R is related to R2
x,max by the inequality: R2

x,max = MRR
2
x,observed. or MR = R2

x,max/R
2
x,observed.

This is closely related to proportional selection relationship described in Oster (2019). Assume

without loss that there is only one observed control z1ij (otherwise, we can define Z1
ij ≡

∑L
l=1 δlz

l
ij and

normalize accordingly). Then, there exists a value κ (denoted δ in Oster 2019), where the following

relationship holds:

κ ·
Cov(xij , z

1
ij)

V ar(z1ij)
=

Cov(xij , z
2
ij)

V ar(z2ij)
,

which simplifies to:

κ · Corr(xij , z
1
ij) ≡ κρ2x,z1 = Corr(xij , z

2
ij) = ρ2x,z2 .

The R2 values from regressions of xij on z1ij , and both z1ij and z2ij are given by ρ2x,z1 and ρ2x,z1 +

ρ2x,z2 = (1 + κ)ρ2x1 respectively. Hence, the equation R2
x,max = Mx,RR

2
x,observed is equivalent to

(1 + κ)ρ2x1 = Mx,Rρ
2
x1 , or Mx,R = 1 + κ. Oster (2019) argues that in many empirical applications,

a value of κ = 1 is reasonable. This corresponds in our framework to a choice of Mx,R = 2 or

R2
x,max = min{2R2

x,observed, 1}.

Remark 4. Since Assumption R0 restricts R2 < R2
x,max ≤ 1, this implies that xij is not perfectly pre-

dicted by a linear combination of z1ij , ..., zKij . This is necessary because otherwise, it will be impossible

to distinguish between effects of the zkij ’s and the effect of xij .

In this section, we consider a simplified setting where the scaling variable is exogenous, given by

Assumption E below. This mirrors the OLS case more closely, since we are only trying to bound the

OVB for one variable. The general case where the scaling variable is not necessarily exogenous is

considered in the next section.

Assumption E (Exogenous Scaling Variable). Assume that wij ⊥ (xij , z
1
ij , ..., z

K
ij )

′.

2.2 Gaussian Regressors and Errors

In this section, we first make a strong assumption about the distribution of the covariates and error

terms, before showing that the results apply more generally in subsequent analyses.
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Assumption N0 (Gaussian Distribution and i.i.d. Errors). Assume that the covariates and struc-

tural error terms are jointly normally distributed:

(xij , wij , z
1
ij , ..., z

K
ij )

′ ∼i.i.d. N(0,Σ),

where Σ is a positive-definite correlation matrix. In addition, assume that Cov(zkij , z
k′

ij ) = 0 for all

k′ ̸= k.

Remark 5. Diegert, Masten, and Poirier (2022) note the “exogenous controls” assumption, i.e., that

zL+1
ij ⊥ (z1ij , ..., z

L
ij)

′ is unrealistic in many empirical settings. Nonetheless, the part in assumption N0

stating that the zkij ’s are independent is without loss of generality. This is because the OVB depends

only on the space spanned by the zkij ’s, and thus, if the zkij ’s were not initially independent, we can

always orthogonalize them using Gram-Schimdt or by partialling out. Independence of the zkij ’s is only

assumed here to simplify the formulae.

Next, I introduce some notation for population estimates from different multinomial probit spec-

ifications. Denote estimates from the specification without controls using “checks” (e.g., β̌/α̌) and

estimates from the specification including the observed controls z1ij , ..., z
L
ij using “hats” (e.g., β̂/α̂).

Also, denote correlations between two random variables U and V by ρU,V .

Lemma 1. Under Assumptions D, N0, R0, and E, we have:

β

α
∈ I ≡

 β̂

α̂
−
∣∣∣∣
(
M

L∑
l=1

δ̂l
α̂

)
√√√√R2

x,max −
L∑

l=1

ρ̂2
x,zl

∣∣∣∣, β̂α̂ +

∣∣∣∣
(
M

L∑
l=1

δ̂l
α̂

)
√√√√R2

x,max −
L∑

l=1

ρ̂2
x,zl

∣∣∣∣
 .

(3)

When L = 1 and ρ̂x,z1 ̸= 0, these bounds can also be written as:

β

α
∈ I =

(
β̂

α̂
−
∣∣∣∣ M

ρ̂x,z1

(
β̂

α̂
− β̌

α̌

)(√
R2

x,max − ρ̂2x,z1

) ∣∣∣∣, β̂α̂ +

∣∣∣∣ M

ρ̂x,z1

(
β̂

α̂
− β̌

α̌

)(√
R2

x,max − ρ̂2x,z1

) ∣∣∣∣
)
.

(4)

Moreover, these bounds are sharp, in the sense that for any τ in I, there exists a data-generating

process satisfying Assumptions D, N0, R0, and E that yields the estimates (α̌, β̌, α̂, β̂, γ̂x,z1 , ..., γ̂x,zL)′,

and such that β/α = τ .

The full proof of Lemma 1 is given in the Appendix, but the key is that we have an exact formula

for the omitted variables bias in the probit model with Gaussian covariates. Specifically, suppose we
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estimate utility without any controls:

vij = β̌xij + α̌wij + eij . (5)

Assumption N0 implies that for each k:

zkij = ρx,zkxij + νkij , E[νkij |xij ] = 0, V ar(νkij |xij) = σ2
νk . (6)

and that (ν1ij , ..., νKij )′ is jointly normally distributed with a diagonal covariance matrix. So, substituting

equations (6) and (1) into equation (5), we obtain:

vij =

(
β +

K∑
k=1

δkρx,zk

)
︸ ︷︷ ︸

=β̌

xij + αwij +

(
ϵij +

K∑
k=1

ρx,zkνkij

)
︸ ︷︷ ︸

=eij

.

The error term eij has a Gaussian distribution as a consequence of Assumption N0, and thus, equation

(5) is still a multinomial probit specification. From this we deduce that the population estimates of

the coefficients on xij and wij are given by:

β̌ =
β +

∑K
k=1 δkρx,zk√

1 +
∑K

k=1 δ
2
kσ

2
νk

, α̌ =
α√

1 +
∑K

k=1 δ
2
kσ

2
νk

. (7)

Taking the ratio of β̌ and α̌, the attenuation term cancels out, and the omitted variables bias is

given by
∑K

k=1 δkρx,zk/α. Similarly, one can show that when including z1ij , ..., z
L
ij in the utility equation,

the omitted variables bias is
∑K

k=L+1 δkρx,zk/α = δL+1ρx,zL+1/α. The remainder of the proof derives

straightforward bounds for δL+1 and ρx,zL+1 based on the assumptions made in the Lemma.

Remark 6. Other than computing bounds, another way to use the results above is for “hypothesis

testing”. Specifically, we would like to test whether the discrepancy between the estimates β̂/α̂ and τ∗

can be explained by omitted variables bias, so we form the following null hypothesis:

H0 : β/α = τ∗.
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We can then compute that the minimal values of (M,R2
max) that are consistent with the null hypothesis:

|β̂/α̂− τ∗| = |

(
M

L∑
l=1

δ̂l/α̂

)
√√√√R2

max −
L∑

l=1

ρ̂2
x,zl

 |

=⇒ M = |β̂/α̂− τ∗| ·

(
L∑

l=1

δ̂l/α̂

)−1

√√√√R2

max −
L∑

l=1

ρ̂2
x,zl

 ,

and the researcher can gauge whether these values of (M,R2
max) are plausible.

Remark 7. The estimates in the proof are asymptotic, abstracting from statistical uncertainty, but in

practice, we may want to account for this uncertainty. Suppose the researcher wants a coverage rate

of at least 1 − γ. Suppose that sgn(α̂ − q · se(α̂)) = sgn(α̂ + q · se(α̂)) ̸= 0, otherwise, the bounds

would be (−∞,∞) since the coefficient in the denominator, α can approach zero from either positive

or negative direction. Assume also that α̂−q1−γ/2 ·se(α̂) > 0 to simplify notation (analogous formulae

can be obtained for the case α̂+ q1−γ/2 · se(α̂) < 0. Then, we can write the bounds with coverage rate

at least 1− γ as:

β̂ − q1−γ/2 · se(β̂)

α̂+ q1−γ/2 · sgn
(
β̂ − 1.96se(β̂)

)
se(α̂)

−
∣∣∣∣
(
M

L∑
l=1

|δ̂l|+ q1−γ/2 · se(δ̂l)
α̂− q1−γ/2 · se(α̂)

)
√√√√R2

max −
L∑

l=1

(
ρ̂x,zl + q1−γ/2 · se(ρ̂x,zl)

)2∣∣∣∣
for the lower bound, and:

β̂ + q1−γ/2 · se(β̂)

α̂− q1−γ/2 · sgn
(
β̂ − q1−γ/2 · se(β̂)

)
se(α̂)

+

∣∣∣∣
(
M

L∑
l=1

|δ̂l|+ q1−γ/2 · se(δ̂l)
α̂− q1−γ/2 · se(α̂)

)
√√√√R2

max −
L∑

l=1

(
ρ̂x,zl + q1−γ/2 · se(ρ̂x,zl)

)2∣∣∣∣
for the upper bound, where q1−γ/2 is the (1− γ/2)-th quantile of a standard Gaussian distribution.3

Note also that this bound will have coverage rate greater than 1 − γ in general, since it considers

the “worst-case” value in the (1−γ/2)×100% CI for coefficient estimates entering the lower and upper

bounds. If (asymptotic) coverage rate of exactly 1 − γ is desired, one can in principle use the entire
3In the denominator, there is a term corresponding to the sgn(·) function is evaluated at the value of numerator.

This is to account for the fact that (if the the denominator is positive) increasing the denominator reduces the value
when the numerator is positive, but increases it when the numerator is negative.
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covariance matrix for the coefficient estimates in conjunction with the delta method.

Remark 8. In practice, for computing the bounds with more than one control variable, one can orthog-

onalize the zlij ’s using Gram-Schmidt, or by residualizing recursively. However, a simpler approach

may to reduce the zlij ’s into a single-dimensional composite control based on a linear combination using

utility weights. Specifically, one can estimate the specification including the zlij ’s, and then consider

z̃1ij =
∑L

l=1 δ̂1z
l
ij as the composite variable. One can then estimate the specification using z̃1ij as the

control variable (after standardizing it to have unit variance), and compute the bounds using either

equation (3) or (4). 4

2.3 Relaxing the Distributional Assumption

The assumption that the covariates and error terms follow a Gaussian distribution is stronger than

necessary. Below, I introduce an assumption under which we can obtain the same results.

Assumption N (Linear Conditional Expectation). Define µij ≡ bxij + awij +
∑K

k=1 dkz
k
ij , and

assume that:

E
[
(xij , wij , ..., z

1
ij , ..., z

K
ij )

′|(µi1, ..., µiJ)
′]

is linear in µi1, ..., µiJ . Also, assume that (xij , wij , ..., z
1
ij , ..., z

K
ij )

′ is distributed i.i.d. with positive

definite covariance matrix Σ, and that Cov(zkij , z
k′

ij ) = 0 for all k′ ̸= k.

Remark 9. Assumption N relaxes Assumption N0 in two ways. First, it allows for more general

distributions for the covariates (xij , wij , ..., z
1
ij , ..., z

K
ij )

′, as long as they have the linear conditional

expectation property given in the assumption. For example, this assumption is satisfied if the distri-

bution of (xij , wij , ..., z
1
ij , ..., z

K
ij )

′ belongs to the class of spherically symmetrically distributions, which

the multivariate Gaussian distribution is a special case of.

The second way in which Assumption N relaxes Assumption N0 is that there are no assumptions

on the distribution of ϵi. Not only does ϵij not have to follow a Gaussian distribution, Assumption N

also allows for non-zero correlations between ϵij and ϵij′ (j ̸= j′).

The following proposition states that the bounds given in Lemma 1 still holds if Assumption N0 is

replaced with Assumption N.
4One scenario where this approach of using a composite control variable may not be preferable is if estimating the

random utility model is computationally intensive. This is because this approach requires estimating the specification
with controls twice – once to obtain the utility weights on the control variables, and a second time with the composite
control variable to obtain the coefficients to compute the bounds. In this case, it may be preferable to orthogonalize the
control variables beforehand, since this requires estimating the random utility model only once.

10



Proposition 1. (OVB Bound with Exogenous Scaling Variable). Under Assumptions D, N, and R0,

and E, the bounds for β/α is given by the interval I in equations (3) and (4). Moreover, these bounds

are sharp, in the sense that for any τ in I, there exists a data-generating process satisfying Assumptions

D, N, R0, and E that yields the estimates (α̌, β̌, α̂, β̂, γ̂x,z1 , ..., γ̂x,zL)′, and such that β/α = τ .

Proof. Under Assumption N, the coefficient estimates on the covariates derived in the proof of Lemma

1 still hold up to a scale, as shown in Ruud (1983). Since the parameter of interest is a ratio, the

scale cancels out, and so the proof of Lemma 1 goes through when we replace Assumption N0 with

Assumption N.

Remark 10. A practical implication of this result is that as long as the researcher believes the regressors

have the linear conditional expectation property described in Assumption N, it does not matter what

distribution she assumes for the error term. In particular, the researcher may prefer to estimate a

conditional logit model instead of a conditional probit model (even if she believes that ϵij follow a

Gaussian distribution) since it is typically less computationally expensive to do so, and the bounds for

the OVB given in equations (3) and (4) will still hold asymptotically.

3 General Model

In this section, we will drop Assumption E, so that now both the the variable of interest and the

scaling variable potentially both suffer from OVB. We modify Assumption R0 slightly, to consider

additionally, the regression of wij on z1ij , ..., z
K
ij .

Assumption R (R2 from regressions of xij and wij on all the zkij’s). Assume that the values of the

R2 from regressions of xij and wij on z1ij , ..., .z
K
ij are strictly smaller than R2

x,max ≤ 1 and R2
w,max ≤ 1

respectively.

Remark 11. Again, the values of R2
x,max and R2

w,max should be specified by the researcher based on

contextual knowledge.

Assumption C (Non-Zero Denominator). Assume that the following condition holds:

sgn

α̂− (M ·
K−1∑
l=1

δ̂l)

√√√√R2
w,max −

K−1∑
l=1

ρ̂2
w,zl

 = sgn

α̂+ (M ·
K−1∑
l=1

δ̂l)

√√√√R2
w,max −

K−1∑
l=1

ρ̂2
w,zl

 ̸= 0.

Remark 12. Assumption C guarantees that the bounds for the scaling variable does not include zero.
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If this assumption is violated, the bound for β/α will be (−∞,∞).5

Proposition 2. (OVB Bound with Endogenous Scaling Variable). Under Assumptions D, N, R, and

C, β/α ∈ I = (Imin, Imax), where Imin and Imax are defined by:

Imin ≡ min
ρx,zK ,ρw,zK

β̂ − (M ·
∑K−1

l=1 δ̂l)ρx,zK

α̂− (M ·
∑K−1

l=1 δ̂l)ρw,zK

s.t.

(
1−

K−1∑
l=1

ρ̂2w,zl

)
ρ2x,zK +

(
1−

K−1∑
l=1

ρ̂2x,zl

)
ρ2w,zK

+ 2

(
−ρ̂x,w +

K−1∑
l=1

ρ̂x,zl ρ̂w,zl

)
ρx,zKρw,zK ≤ CK−1, (8)

ρ2x,zK ≤ R2
x,max −

K−1∑
l=1

ρ̂2x,zl ,

ρ2w,zK ≤ R2
w,max −

K−1∑
l=1

ρ̂2w,zl , (9)

Imax ≡ max
ρx,zK ,ρw,zK

β̂ − (M ·
∑K−1

l=1 δ̂l)ρx,zK

α̂− (M ·
∑K−1

l=1 δ̂l)ρw,zK

s.t.

(
1−

K−1∑
l=1

ρ̂2w,zl

)
ρ2x,zK +

(
1−

K−1∑
l=1

ρ̂2x,zl

)
ρ2w,zK

+ 2

(
−ρ̂x,w +

K−1∑
l=1

ρ̂x,zl ρ̂w,zl

)
ρx,zKρw,zK ≤ CK−1, (10)

ρ2x,zK ≤ R2
x,max −

K−1∑
l=1

ρ̂2x,zl ,

ρ2w,zK ≤ R2
w,max −

K−1∑
l=1

ρ̂2w,zl , (11)

and where Ck̄ is defined by:

1− ρ̂2x,w +

k̄∑
k=1

(
2ρ̂x,wρ̂x,zk ρ̂w,zk − ρ̂2x,zk − ρ̂2w,zk

)
+

k̄∑
k=1

∑
k′ ̸=k

(
ρ̂x,zk ρ̂w,zk′ (ρ̂x,zk ρ̂w,zk′ − ρ̂x,zk′ ρ̂w,zk)

)

for any integer k̄ ≥ 0. Moreover, when R2
x,max = R2

w,max = 1, this bound is sharp, in the sense that

for any τ in I, there exists a data-generating process satisfying Assumptions D, N, R, and C, that

yields the estimates (α̌, β̌, α̂, β̂, γ̂x,z1 , ..., γ̂x,zL)′, and such that β/α = τ .

5Even though the setup of the model assumes α ̸= 0, β/α can still tend to positive and negative infinity as α
approaches zero from both sides, hence the reason Assumption C is needed.
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The full proof is given in the Appendix, but here I briefly explain the roles played by various

quantities in the statement of the proposition. The constrained optimization problems (9) and (11)

define the largest and smallest possible values of the true parameter based on the omitted variables bias

formula, and the restrictions imposed by the assumptions. The term Ck is equal to the determinant of

the kth leading principal minor of the covariance matrix Σ, and the first constraint in the optimization

problems ensures that Σ is positive (semi-) definite.

Remark 13. The constrained optimization problems (9) and (11) are non-convex, and the solution gen-

erally involves finding zeroes of quartic polynomials and checking boundary conditions. The formulas

are rather complicated, and are given in Appendix Section C. However, in practice, one can simply

do a grid search over (γx,zK , γw,zK ) ∈ [−1, 1]2 by evaluating the objective functions for each possible

value and checking whether the constraints are satisfied.

Remark 14. Alternatively, one can simply ignore the first constraint and use only the second and third

constraints. This will produce a looser bound in general, but there is a simple closed form solution for

the bounds, given by:

I
(2)
min =

β̂ −
(
M
∑L

l=1 δ̂l

)(√
R2

x,max −
∑L

l=1 ρ̂
2
x,zl

)
α̂+ sgn

(
β̂ −

(
M
∑L

l=1 δ̂l

)(√
R2

x,max −
∑L

l=1 ρ̂
2
x,zl

))(
M
∑L

l=1 δ̂l

)(√
R2

w,max −
∑L

l=1 ρ̂
2
w,zl

) ,

I(2)max =
β̂ +

(
M
∑L

l=1 δ̂l

)(√
R2

x,max −
∑L

l=1 ρ̂
2
x,zl

)
α̂− sgn

(
β̂ −

(
M
∑L

l=1 δ̂l

)(√
R2

x,max −
∑L

l=1 ρ̂
2
x,zl

))(
M
∑L

l=1 δ̂l

)(√
R2

w,max −
∑L

l=1 ρ̂
2
w,zl

) ,
assuming that α̂−

(
M
∑L

l=1 δ̂l

)(√
R2

w,max −
∑L

l=1 ρ̂
2
w,zl

)
> 0.

Remark 15. Intuitively, using the first constraint may produce a tighter bound since it utilizes infor-

mation on the covariances between variables to rule out some values of γx,zK and γw,zK . For a simple

example, consider the case where there is one control variable (L = 1), and parameter values:

α = β = 10, δ1 = 1, ρx,w = 0.5, ρx,z1 = ρw,z1 = 0.5,

and suppose we assume M = 1, R2
x,max = R2

w,max = 0.9. Then, without using the first constraint, the

13



objective function takes its minimum when:

ρx,z2 =
√
R2

x,max − ρ2x,z1 ≈ 0.75,

ρw,z2 = −
√
R2

x,max − ρ2x,z1 ≈ −0.75.

However, the first constraint tells us this is not possible. In particular, these values would imply that

the following matrix: 

1 ρx,w ρx,z1 ρx,z2

ρx,w 1 ρw,z1 ρw,z2

ρx,z1 ρw,z1 1 0

ρx,z2 ρw,z2 0 1


has a determinant of -0.62, so it is not positive semidefinite and cannot be a covariance matrix.6 Hence,

the true magnitude of either ρx,z2 or ρw,z2 must be smaller than the assumed values above, so that

using the first constraint results in a tighter bound.

Remark 16. Accounting for sampling uncertainty is more tricky in this general case, since it is not

immediately obvious whether a given direction of movement in the covariance terms ρx,zl and ρw,zl

increases or decreases lower and upper bounds. In principle, one can consider whether the first con-

straint binds at the estimated values, and take the partial derivative with respect to each covariance

term (to figure out if increasing the covariance tightens or loosens the constraint). However, this is

tedious in practice (especially if L is large), and it still does not cover some cases: for example, even

if the first constraint does not bind at the estimated values, it is possible that one cannot reject the

null hypothesis that it binds at the true values of the parameters due to statistical uncertainty.

Therefore, at the cost of settling for a looser bound, one can use the bounds in Remark 14 that do

not use information on the covariance terms ρx,zl and ρw,zl as a starting point. Specfically, suppose

we want a coverage rate of at least 1 − γ. Assume also that we can reject the null hypothesis that

α = 0, and to simplify notation, that:

α̂−q1−γ/2·se(α̂)−

(
M

L∑
l=1

(δ̂l + q1−γ/2 · se(δ̂l))

)
√√√√R2

w,max −
L∑

l=1

(
|ρ̂w,zl | − q1−γ/2 · se(ρ̂w,zl)

)
2

 > 0.

6One can check that the first three leading principal minors are positive, so that the covariance matrices for the
(xij , wij , z

1
ij)

′ are valid.
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Then, we can use the bounds:

I(q1−γ/2) =
(
I
(2)
min(q1−γ/2), I

(2)
max(q1−γ/2)

)
=

(
I
(2)
min,num(q1−γ/2)

I
(2)
min,den(q1−γ/2)

,
I
(2)
max,num(q1−γ/2)

I
(2)
max,den(q1−γ/2)

)
,

where:

I
(2)
min,num(q1−γ/2) ≡ β̂−q1−γ/2·se(β̂)−

(
M

L∑
l=1

(δ̂l + q1−γ/2 · se(δ̂l))

)
√√√√R2

x,max −
L∑

l=1

(
|ρ̂x,zl | − q1−γ/2 · se(ρ̂x,zl)

)
2

 ,

I
(2)
min,den(q1−γ/2) = α̂+ q1−γ/2 · se(α̂)

+ sgn
(
I
(2)
min,num

)(
M

L∑
l=1

(δ̂l + q1−γ/2 · se(δ̂l))

)
√√√√R2

w,max −
L∑

l=1

(
|ρ̂w,zl | − q1−γ/2 · se(ρ̂w,zl)

)
2

 ,

I(2)max,num(q1−γ/2) ≡ β̂+q1−γ/2·se(β̂)+

(
M

L∑
l=1

(δ̂l + q1−γ/2 · se(δ̂l))

)
√√√√R2

x,max −
L∑

l=1

(
|ρ̂x,zl | − q1−γ/2 · se(ρ̂x,zl)

)
2

 ,

I
(2)
max,den(q1−γ/2) = α̂− q1−γ/2 · se(α̂)

− sgn
(
I(2)max,num

)(
M

L∑
l=1

(δ̂l + q1−γ/2 · se(δ̂l))

)
√√√√R2

w,max −
L∑

l=1

(
|ρ̂w,zl | − q1−γ/2 · se(ρ̂w,zl)

)
2

 .

While the distributional assumptions in Assumption N are more general than in N0, it still does

not cover certain regressors used in practice such as indicator variables, so we may wonder about the

consequences of misspecifying the error distribution in these cases. A well-known interpretation of

the estimates from such a misspecified MLE is that they minimize the Kullback-Leibler divergence

between the true and assumed distributions. However, from an applied perspective, this still does not

provide the researcher with guidance on how far the coefficient estimates are from their true values

due to the misspecification.

In the final part of this section, I state a result showing that if the number of controls gets large, the

main results hold asymptotically with probability one, with essentially no restrictions on the distribu-

tions of the covariates. Before stating the result, I introduce additional notation, and a new assumption

that replaces the distributional assumptions in Assumption N. Denote by Y ≡ (x′
i, w

′
i, z

1
i , ..., z

K
i )′ a
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random vector taking values in Rd where d = KJ + 2, and note that we can write Y = µY + Σ1/2Z,

for a random variable Z with E[Z] = 0, E[ZZ ′] = Id. Also, the matrix norm in this section, denoted

by || · || corresponds to the spectral norm.

Assumption S (Steinberger and Leeb 2018). Let Vd,J be the collection of d × J matrices with

orthonormal columns (i.e., the Stiefel manifold), equipped with the Haar measure νd,J(·) (i.e., uniform

distribution on the Stiefield manifold). Let Sk be the m×m = (ZiZ
′
j/d)

m
i,j=1 Gram-matrix for m i.i.d.

copies of Z, Z1, ..., Zm. For g ≥ 1, let G = G(Sm − Im) = Πg
l=1(Sm − Im)il,jl for (il, jl) ∈ {1, ...,m}2,

il ≤ jl, 1 ≤ l ≤ g, and let G = 1 for g = 0 (so that G is the monomial of order g). Suppose that the

following conditions hold for m = 2:

(S1)(a) There are constants ϵ̄ ∈ [0, 1/2] and ᾱ ≥ 1 so that E||
√
d(Sm − Im)||2m+1+ϵ ≤ ᾱ.

(S1)(b) There are constants β̄ > 0 and ξ ∈ (0, 1/2] that satisfy the following: For any monomial

G = G(Sm − Im) with degree g ≤ 2m, we have |dg/2E[G] − 1| ≤ β̄/dξ if G consists only of quadratic

factors in elements above the diagonal, and |dg/2E[G]| ≤ β̄/dξ if G contains a linear factor.

(S2) There is a constant D ≥ 1 such that the following is true: if R is an orthogonal d× d matrix,

then the marginal densities of the first d−m+ 1 components of RZ are bounded by
(

d
m−1

)1/2
Dd−k+1.

Also, assume that (xij , wij , ..., z
1
ij , ..., z

K
ij )

′ is distributed i.i.d. with positive definite covariance matrix

Σ, and that Cov(zkij , z
k′

ij ) = 0 for all k′ ̸= k.

Note that we are considering a sequences of data-generating processes as d tends to infinity, but for

notational simplicity, I will keep the dependence of the parameters and distributions on the sequence

implicit.

Proposition 3. (OVB Bound with Endogenous Scaling Variable, with many Covariates and Products).

Suppose Assumptions S, N, R, and C, hold, and that d → ∞, N/d → ∞ and J remains finite

or goes to infinity at a rate slower than log(d). Then, there are subsets J(Σ) and U(Λ) from the

Stiefel manifolds of dimensions d × J and d × d respectively, such that for any values of A satisfying

B ≡ Σ1/2A(A′ΣA)−1/2 ∈ J(Σ), and Σ ∈ S ≡ {UΛU ′|Λ = diag(λl) > 0, U ∈ U(Λ)}, the (non-

inclusive) upper and lower bounds for β/α approach Imin and Imax, as given by equations (9) and (11)

respectively, and the Haar measures of Jc(Σ) and Uc(Λ) tend to zero.

Remark 17. lt is worth mentioning a key difference in the asymptotics I consider here, compared to

papers studying the properties of MLE in high dimensions, e.g., Sur and Candes (2019), and Zhao, Sur,

and Candes (2022) who study high-dimensional logistic regressions. These papers typically assume that

the number of covariates tend to infinity at the same rate as the number of observations (i.e., where
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N/d remains bounded), whereas I assume that number of covariates grow at a slower rate (so that

N/d → ∞. On the other hand, these papers require much stronger assumptions on the distribution of

the covariates and error terms. For example, Sur and Candes (2019) and Zhao, Sur, and Candes (2022)

require that the covariates are jointly normally distributed and that the error term’s distribution is

correctly specified, whereas my result above requires neither of these assumptions.

Remark 18. As an example of an empirical setting where the number of controls gets large, consider

demand estimation for consumers across many different markets. In these cases, it is often sensible to

include market fixed effects in the utility equation, and potentially, to allow some of the coefficients

to vary by market. A sampling scheme that mirrors the asymptotics assumed in Proposition 3 is as

follows:

1. Suppose that there is a superpopulation of markets, from which we draw a random sample of

markets.

2. Suppose that within each market, there is a superpopulation of individuals, from which we also

draw a random sample.

The first step ensures that d → ∞ since we include market fixed effects in the utility equation, while

the second step ensures that N/d → ∞.

4 Simulations

In this section, I present simulation results on the performance of the bounds I derived in the pre-

vious sections. Panel A shows specifications with exogenous scaling variable, whereas panel B shows

specifications with endogenous scaling variable. For each specification, I run 100 simulations, with

10,000 observations in each simulation. All models are estimated using conditional logit, although the

true error distribution is normally distributed. These bounds account for standard errors, and are

computed to ensure a coverage rate of at least 95%.

In computing the bounds, I use the true value of M = 1. This is unknown to the researcher in

practice, but as long as she chooses a larger value of M , she will obtain an even more conservative

bound. I also derive bounds under alternative assumptions for R2
x,max and R2

w,max, since these values

are also unknown to the researcher in practice. For the conservative bounds, I use the most conservative

value of 1 for the maximum R2 values, whereas for the exact bounds, I use the true values of the R2.
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The results in Table 1 shows that the coverage rate is greater than 95%, as we would expect, and

that making (valid) assumptions about the values of R2
x,max and R2

w,max can appreciably tighten these

bounds.
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Table 1: Simulation Results

Panel A: Exogenous Scaling Variable
Specification Coverage Rate Lower Bound (Mean) Upper Bound (Mean)

Conservative Exact Conservative Exact Conservative Exact
0.25 0.25 0 0 0 1.00 1.00 0.007 0.083 0.248 0.177
-0.25 0.25 0 0 0 1.00 1.00 -0.008 0.079 0.262 0.181
0.25 -0.25 0 0 0 1.00 1.00 -0.056 0.031 0.204 0.122
-0.25 -0.25 0 0 0 1.00 1.00 -0.042 0.035 0.191 0.118

Panel B: Endogenous Scaling Variable
Specification Coverage Rate Lower Bound (Mean) Upper Bound (Mean)

Conservative Exact Conservative Exact Conservative Exact
0.25 0.25 -0.1 0.1 0.1 1.00 1.00 0.013 0.082 0.277 0.175
-0.25 0.25 -0.1 0.1 0.1 1.00 1.00 0.002 0.078 0.294 0.179
0.25 -0.25 -0.1 0.1 0.1 1.00 1.00 -0.061 0.030 0.230 0.119
-0.25 -0.25 -0.1 0.1 0.1 1.00 1.00 -0.043 0.034 0.210 0.115
0.25 0.25 -0.1 -0.1 0.1 1.00 1.00 0.018 0.087 0.281 0.180
-0.25 0.25 -0.1 -0.1 0.1 1.00 1.00 0.006 0.083 0.302 0.185
0.25 -0.25 -0.1 -0.1 0.1 1.00 1.00 -0.055 0.033 0.234 0.123
-0.25 -0.25 -0.1 -0.1 0.1 1.00 1.00 -0.039 0.037 0.214 0.119

True Parameters: β/  = 1/10, δ⍺  1 = 1, δ 2 = 1, M=1

⍴x,z1 ⍴x,z2 ⍴w,z1 ⍴w,z2 ⍴x,w

⍴x,z1 ⍴x,z2 ⍴w,z1 ⍴w,z2 ⍴x,w

Notes: This table shows results from simulations described in the main text. Each 100 simulations are run for each specification, the number of observations in each simulation is 10,000, and 
all models are estimated using conditional logit. All bounds are formed using the true value of M=1, and the conservative bounds do not employ any assumption on the maximum R-squared 
from regressions of the endogenous and scaling variables on the controls, whereas the exact bounds use the actual R-squared values for the maximum R-squared. All bounds are formed 
accounting for standard errors in the parameter estimates, in order to ensure at least 95% coverage rate. The bounds in panel A are formed using the formula for exogenous scaling variables, 
whereas the boudns in panel B are formed using the formula for endogenous scaling variables.
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5 Empirical Applications

In this section, I use two empirical applications to illustrate how the sensitivity analysis can be applied

in practice. A general description of each empirical application, and the results of the sensitivity

analysis is given here. Details concerning the assumptions and calculations underlying the sensitivity

analysis are given in theppendix.

5.1 Chevalier and Goolsbee (2009): Are Consumers Forward Looking?

Chevalier and Goolsbee (2009) test whether consumers are as forward-looking as typical IO models

about durable goods assume. They study this in the setting of college textbooks, where the publication

of a new version of a textbook results in a dramatic fall in the value of the old version. At a high level,

Chevalier and Goolsbee tests whether college students are more price-sensitive when a revision of the

textbook is imminent, and to do so they model demand as a function of current price, its interaction

with the probability of revision in the near future, as well as textbook characteristics.

A concern with estimation of this demand model without using instruments is that unobserved

quality of a textbook may be positively correlated with price, probability of revision, and demand.

This corresponds to the “observational estimate” in column 1 of of Table 4 in Chevalier and Goolsbee

(2005), which I use for my sensitivity analysis (although their preferred specifications in the latter

columns and subsequent tables address this using IV).7 Specifically, I derive conditions under which

OVB can completely explain the finding from the observational estimate that textbook consumers are

forward-looking.8

Figure 1 shows the values of M and R2
x,max under which the finding from observational estimates

that consumers are forward-looking is not robust to OVB. For example, if we believe that about half

of the variation in the interaction between price and revision probability can be explained by textbook

characteristics (the included controls) and unobserved quality (the omitted variable), then OVB can

completely explain the result if consumers value unobserved quality at least 7.5 times more than

they do textbook characteristics. To the extent that such a condition is plausible, this highlights the

importance of the IV specifications in Chevalier and Goolsbee (2009), which use current and expected

future prices (as well as their interactions) as instruments in their preferred specifications.
7I use the results from the NBER working paper version, since the published version unfortunately contains a typo-

graphical error in the table that shows the main results.
8Some required information is not available from the results presented in the paper (specifically, the covariances

between the regressors), so in these cases I need to make some assumptions. This is discussed in greater detail in the
Appendix.
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Figure 1: Can OVB Explain Results from Observational Estimates Showing that Textbook Consumers
are Forward-Looking?
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5.2 Cheng (2023): Are Consumers Responsive to Nursing Home Quality?

In my second empirical application, I consider estimates from Cheng (2023) of nursing home residents’

demand for quality. Cheng estimates that demand for quality in the nursing home setting is an

order of magnitude smaller than previous estimates from studies in hospital settings. In the following

sensitivity analysis, I derive conditions under which OVB can completely explain the discrepancy

between estimates of demand for quality in the nursing home and hospital settings.

Using the estimates β̂, α̂, δ̂1, ρ̂x,w, ρ̂x,zK , ρw,zK from Appendix Table 2, Figure 2 plots the values

of M and either R2
x,max or Mx,R under which omitted variables bias can completely explain the

discrepancy between the demand estimates. We observe in Figures 3a and 3b that under the suggested

value of Mx,R or R2
x,max from Oster (2019), indicated by the dashed vertical line, residents need to

value the omitted variable M > 100 times more than observable quality measures in order for OVB to

completely explain nursing home residents’ low demand. On the other hand, Figures 3c and 3d show

that if we assume that almost all of the variation in quality can be explained by the omitted variable,

then residents need to value the omitted variable about M = 2.7 times more than observable quality
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measures in order for OVB to completely explain the low demand. Such a value of M may seem

plausible, but recall that in order for OVB to explain the results, we also need residents to value the

omitted variable positively even though it is strongly negatively correlated with quality, which seems

unlikely.

When thinking about the importance of the omitted variable, it is also important to note that we

should only consider the portion of the omitted variable that is not predicted by the included controls.

For example, if we think that the level of comfort provided by the nursing home is an important omitted

variable, it seems quite likely that comfort is correlated with staffing levels and cited deficiencies.

So, although we may think that comfort is very important (suggesting a large value of M), after

partialling out staffing levels, cited deficiencies, as well as for-profit and chain status, the importance

of the remaining variation may matter much less for consumer utility (so that M can in fact be much

smaller).

6 Conclusion

In this paper, I derive bounds for the OVB in discrete choice models under assumptions about the

relative importance of the unobserved controls relative to the observed ones, as well as the R2 from

regressions of the variable of interest (and the scaling variable) on all controls. Simulation results

confirm the validity of these bounds, and I also illustrate how these methods for sensitivity analysis

can be used in practice in empirical applications studying whether textbook consumers are forward-

looking, and residents’ demand for nursing home quality.
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Figure 2: Conditions Under Which OVB Can Completely Explain Low Demand for Quality
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(b) Conditions for (M,MR)
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(c) Conditions for (M, R̄2
max)
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(d) Conditions for (M,MR)
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Appendix

A Proofs

Proof of Lemma 1. Suppose we estimate utility without any controls:

vij = β̌xij + α̌wij + eij . (12)

Assumption N0 implies that for each k:

zkij = ρx,zkxij + νkij , E[νkij |xij ] = 0, V ar(νkij |xij) = σ2
νk . (13)

and that (ν1ij , ..., ν
K
ij )

′ is jointly normally distributed with a diagonal covariance matrix.

Substituting equations (13) and (1) into equation (12), we obtain:

vij =

(
β +

K∑
k=1

δkρx,zk

)
︸ ︷︷ ︸

=β̌

xij + αwij +

(
ϵij +

K∑
k=1

ρx,zkνkij

)
︸ ︷︷ ︸

=ϵ̌ij

.

The error term ϵ̌ij is normally distributed as a consequence of Assumption N0, and thus, equation (12)

is still a multinomial probit specification. From this we deduce that the population estimates of the

coefficients on xij and wij are given by:

β̌ =
β +

∑K
k=1 δkρx,zk√

1 +
∑K

k=1 δ
2
kσ

2
νk

, α̌ =
α√

1 +
∑K

k=1 δ
2
kσ

2
νk

. (14)

The denominator can be thought as a type of attentuation bias, arising from the fact the utility is

scaled differently in the estimation of equations (12) and (1) — specifically, ϵ̌ij = ϵij +
∑K

k=1 ρx,zkνkij

is normalized to have unit variance in the estimation of equation (12), whereas in equation (1) ϵij is

normalized to have unit variance. Nonetheless, since the parameter of interest is the ratio of coefficients

rather than the individual coefficients, this attenuation term cancels out in β̌/α̌, so it does not affect

the bias for the ratio.
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From equation (14), we obtain:

β̌

α̌
≡ β

α
+

∑K
k=1 δkρx,zk

α︸ ︷︷ ︸
OVB (no controls)

,

and we see that the formula for the OVB closely mirrors the OLS case. Following the same steps as

the case without any controls, we can obtain a similar equation for the OVB for the specification when

(z1ij , ..., z
L
ij)

′ are controlled for in the estimation:

β̂

α̂
≡ β

α
+

δKρx,zK

α︸ ︷︷ ︸
OVB (observed controls)

.

We would like to now consider a worst-case bound for the OVB for β̂/α̂ under the assumptions we

made. For this, it is useful to note that Assumption R0 implies that
∑K

k=1 ρ
2
x,zk < R2

max, since:

1 = V ar(xij) = Cov

(
K∑

k=1

ρx,zkzkij + eij ,

K∑
k=1

ρx,zkzkij + eij

)

=

K∑
k=1

ρ2x,zk + V ar(eij)

=⇒ R2
max > R2 = 1− V ar(eij)

V ar(xij)
= 1− (1−

K∑
k=1

ρ2x,zk) =

K∑
k=1

ρ2x,zk .

Hence, the worst case bound for the OVB is given by:

max
δK ,ρx,zK

δKρx,zK

s.t. δK ≤ M

L∑
l=1

δl, δK ≥ 0 ∀k ∈ {L+ 1, ...K}

ρ2x,zK ≤ R2
max −

L∑
l=1

ρ2x,zl ,

where the first constraint comes from Assumption D, and the last constraint comes from Assumption

R0, and there is an analogous optimization problem for the minimum. 9 It is clear that the maximum

is obtained when δK = M
∑L

l=1 δl and ρx,zK =
√
R2

max −
∑L

l=1 ρ
2
x,zl , and in the solution for the

9More precisely, this last inequality should be strict, but that would imply that we are not optimization over a closed
set and there is no solution in general. So, the OVB can be arbitrarily close to this maximum, but not be equal to it
under our assumptions.
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minimization problem, the sign of ρx,zK at the minimum is flipped.

Now, we observe that δ̂l = δl since zkij ⊥ zk
′

ij for k ̸= k′ under Assumption N0, and under the same

assumption, we have ρ̂x,zl = ρx,zl where ρ̂x,zl is obtained from a regression of zlij on xij . Hence we

obtain a formula for the bounds for the true value β/α which depends only on quantities identified in

the data:

β

α
∈ I ≡

 β̂

α̂
−
∣∣∣∣
(
M

L∑
l=1

δ̂l
α̂

)
√√√√R2

max −
L∑

l=1

ρ̂2
x,zl

∣∣∣∣, β̂α̂ +

∣∣∣∣
(
M

L∑
l=1

δ̂l
α̂

)
√√√√R2

max −
L∑

l=1

ρ̂2
x,zl

∣∣∣∣
 .

To obtain the alternative formula for the bound when L = 1 and ρ̂x,z1 ̸= 0, note that the change

in the estimate for β/α when we include the control z1ij is given by:

β̌

α̌
− β̂

α̂
=

δ̂1ρ̂x,z1

α
.

Setting δK = Mδ̂1 and ρx,zK = ±
√

R2
max − ρ̂2x,z1 and combining this with the equation above, we find

that the worst-case OVB is:

δKρx,zK

α
= ±M · δ̂1

α
·
√

R2
max − ρ̂2x,z1

= ± M

ρ̂x,z1

(
β̌

α̌
− β̂

α̂

)√
R2

max − ρ̂2x,z1 ,

and thus the bound for the true parameter is given by:

β

α
∈ I =

(
β̂

α̂
−
∣∣∣∣ M

ρ̂x,z1

(
β̂

α̂
− β̌

α̌

)(√
R2

max − ρ̂2x,z1

) ∣∣∣∣, β̂α̂ +

∣∣∣∣ M

ρ̂x,z1

(
β̂

α̂
− β̌

α̌

)(√
R2

max − ρ̂2x,z1

) ∣∣∣∣
)
.

Finally, these bounds are sharp, since our proof for the worst-case bounds is constructive. In other

words, for any values of τ ∈ I and identified quantities (β̂, α̂, δ̂1, ..., δ̂L, ρ̂x,z1 , ..., ρ̂x,zL), there are values

of δK and ρx,zK satisfying Assumptions D, N, R0, and E for which β/α satisfies:

β

α
=

β̂

α̂
−

δKρx,zK

α̂
≡ τ,

and is thus consistent with the data, e.g. by setting:

δK = M

L∑
l=1

δ̂l, ρx,zK =
(β̂/α̂− τ)(α̂)

M
∑L

l=1 δ̂l
.
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□

Proof of Proposition 2. By Ruud (1983), we can assume without loss that the covariates and errors

follow a joint normal distribution. In this case, we have:

zkij = ρx,zkxij + νkx,ij , E[νkx,ij |xij ] = 0, V ar(νkx,ij |xij) = σ2
νk
x
.

= ρw,zkwij + νkw,ij , E[νkw,ij |wij ] = 0, V ar(νkw,ij |wij) = σ2
νk
w
.

Substituting this into the probit specification that includes only observed controls, we obtain:

vij =
(
β + δKρx,zK

)︸ ︷︷ ︸
=β̂

xij +
(
α+ δKρw,zK

)︸ ︷︷ ︸
=α̂

wij +
L∑

l=1

δlz
l
ij +

(
ϵij + ρx,zKνKij

)︸ ︷︷ ︸
=ϵ̂ij

.

This implies that the estimated coeffients are related to the true parameter by:

β

α
=

β̂ − δKρx,zK

α̂− δKρw,zK

.

So, to obtain a bound for the true coefficient, we simply need to minimize and maximize this with

respect to (δK , ρx,zK , ρw,zK ) under the constraints implied by Assumptions D, N, and R.

First, we note that at the maximum and minimum, the constraint on δK in Assumption D clearly

binds, so we can set δK = M
∑K−1

l=1 δ̂l. The proof for Proposition 1 already derived the second

constraint in the constrained optimization problems (9) and (11), and the third constraint is derived

exactly the same way replacing xij with wij .

The first constraint is equivalent to the covariance matrix Σ ∈ RK+2,K+2 is positive semi-definite.

This is because by Sylvester’s criterion, Σ is positive semi-definite if and only if all of its leading prin-

cipal minors are non-negative. The first K +1 leading principal minors do not involve the parameters

we are optimizating over (i.e., they are given only by moments identified in the data), so we know that

they must be positive (by Assumption N). The (K + 2)-th leading principal minor is the determinant

of Σ, which Lemma 2 in the Appendix shows, is equal to CK . Rewriting the condition that CK ≥ 0

so that all the unknowns are on the left hand side, we obtain the first constraint in the constrained

optimization problems (9) and (11).

We have shown that the values of ρx,zK and ρw,zK must satisfy the inequalities. Nonetheless, we

must still check that the maximum and minimum exist. To do so, first, we note that the objective
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function is continuous, which is guaranteed by Assumption C. Next, the set of values (ρx,zK , ρw,zK )

can take is clearly bounded, for example, by [−1, 1]2. To show that the set defined by the inequalities

is closed, we note that the set can be written as the intersection of the inverse images of the intervals

(∞, rq] under the functions on the left hand side where rq is the right hand side of the q-th inequality.

Since the functions on the right hand side are continuous and (∞, rq] are all closed, the inverse images

are closed, and so is their intersection, and thus the set of allowed values is closed. Under the Heine-

Borel theorem, the set of allowed values is thus compact, and combined with the fact that the objective

function is continuous, this implies that the minimum and maximum exist.

Hence, we have proven that β/α lies in the well-defined interval (Imin, Imax). Finally, to show

that the bound is tight when R2
x,max = R2

w,max = 1, we note that in this case, the second and third

constraints in the constrained optimization problems (9) and (11) are implied by the first constraint.

□

Lemma 2. The determinant of the covariance matrix for (x,w, z1, ..., zK)′,Σ, is given by:

CK ≡ 1−ρ̂2x,w+

K∑
k=1

(
2ρ̂x,wρ̂x,zk ρ̂w,zk−ρ̂2x,zk−ρ̂2w,zk

)
+

K∑
k=1

∑
k′ ̸=k

(
ρ̂x,zk ρ̂w,zk′ (ρ̂x,zk ρ̂w,zk′ − ρ̂x,zk′ ρ̂w,zk)

)
.

Proof of Lemma 2. The determinant for Σ can be calculated using the Leibniz rule. In particular, the

determinant is given by:

|Σ| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρxw ρx,z1 ... ... ... ρx,zK

ρxw 1 ρw,z1 ... ... ... ρw,zK

ρx,z1 ρw,z1 1 0 ... ... 0

...
... 0

. . . 0 ...
...

...
...

...
...

. . . 0
...

...
...

...
... 0

. . .
...

ρx,zK ρw,zK 0 0 ... ... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(
1−

K∑
k=1

ρ2w,zk

)
− ρxw|Σ∼x,w|+

K∑
k=1

(−1)k+1ρx,zk |Σ∼x,zk |,

where Σ∼u,v corresponds to the matrix after removing the first row, and the column which has ρu,v as
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the first element, for any variables u and v. We can compute that:

ρxw|Σ∼x,w| = ρxw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρxw ρwz1 ... ... ... ρw,zK

ρx,z1 1 0 ... ... 0

... 0
. . . 0 ...

...
...

...
...

. . . 0
...

...
...

... 0
. . .

...

ρx,zK 0 ... ... 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ρxw

(
ρxw −

K∑
k=1

ρw,zkρx,zk

)
,

where the term −
∑K

k=1 ρw,zkρx,zk can be verified by induction. Similarly, we have:

ρx,zk |Σ∼x,zk | = ρx,wρw,zkρx,zk − ρ2x,zk + ρx,zk

∑
k′ ̸=k

ρw,zk′ (ρx,zkρw,zk′ − ρx,zk′ρw,zk),

where the summation term can also be confirmed by induction. Combining these formulae, we obtain:

CK ≡ 1−ρ̂2x,w+

K∑
k=1

(
2ρ̂x,wρ̂x,zk ρ̂w,zk−ρ̂2x,zk−ρ̂2w,zk

)
+

K∑
k=1

∑
k′ ̸=k

(
ρ̂x,zk ρ̂w,zk′ (ρ̂x,zk ρ̂w,zk′ − ρ̂x,zk′ ρ̂w,zk)

)
,

as desired.

□

Proof of Proposition 3. Extending the proof in Ruud (1983) to discrete choice models, the MLE

estimates will be consistent even if the distribution of ϵi is misspecified, as long as the expectation of

each covariate conditional on z̄i ≡ A′Yi ≡ βxi + αwi +
∑K

k=1 δkz
k
i ∈ RJ is linear in z̄i where A is a

d× J matrix. Denoting B ≡ Σ1/2A(A′ΣA)−1/2 ∈ Vd,J , we can write this condition as:

Pr(||E[Z|B′Z]−BB′Z|| > t) = 0

for all t > 0, since

E[Y |A′Y ]− (µY +Σ1/2PΣ1/2AΣ
−1/2(Y − µY )) = Σ1/2(E[Z|B′Z]−BB′Z),

where PΣ1/2A denotes the projection matrix onto the subspace Σ1/2A. This only holds exactly in finite
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dimensions for special distributions of Z (specifically, those described in Assumption D), but here I

only need to show that as d → ∞ and J remains finite or goes to infinity at a rate slower than log(d),

Pr(||E[Z|B′Z]−BB′Z|| > t) tends to zero for values of A ∈ J(Σ) and Σ ∈ S ≡ {UΛU ′|Λ = diag(λl) >

0, U ∈ U(Λ)}, for sets J(Σ) and S described in the Proposition.

Fix J and d. Then, under Assumption S, we know from Proposition 3.4 of Steinberger and Leeb

(2018) that for each τ ∈ (0, 1) and J < d, there is a Borel set G ∈ Vd,J such that for each diagonal

positive definite matrix Λ, there exists a collection U(Λ) = U(G,Λ) ⊆ Od of orthogonal matrices,

satisfying the condition that the sets

S ≡ S(G) ≡ {UΛU ′ : diag(λi) > 0, U ∈ U(G,Λ)},

and

J(Σ) ≡ J(Σ,G) ≡ {A ∈ Vd,J : Σ1/2A(A′ΣA)−1/2 ∈ G},

have the properties that for Σ ∈ S,

sup
Λ:Λ=diag(λi)>0

νd,d(U(Λ)) ≤

√
κ1d

−τξ1

1−
γ1
τ

J

ξ1log(d)


, (15)

sup
Σ∈S

νd,J(Jc(Σ)) ≤

√
κ1d

−τξ1

1−
γ1
τ

J

ξ1log(d)


, (16)

and for any A ∈ J(Σ) and every t > 0,

sup
B∈G

Pr(||E[Z||B′Z]−B′BZ|| > t) ≤ 1

t
d−τξ1 +

γ1
1− τ

J

3ξ1log(d)
, (17)

where ξ1 ≡ min{ξ, ϵ/2 + 1/4, 1/2}/3, and γ1 = max{g1, 6 + 2log(2D
√
πe)}, with the constant κ1

depending only on ᾱ and β̄, and g1 being a global constant. The first two inequalities show that the

measure of Jc(Σ) and Uc(Λ) tend to zero as d → ∞ and J remains finite or tends to infinity at a rate

slower than log(d).

Finally, given that:

||E[Y |A′Y ]− (µY +Σ1/2PΣ1/2AΣ
−1/2(Y − µY ))|| ≤ ||Σ||1/2||(E[Z|B′Z]−BB′Z)||,
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we need to show that ||Σ|| is bounded. Recall that we assumed zkij ⊥ z
′

ij , so the only non-zero elements

in Σ are the diagonals, and the entries corresponding to ρx,zk and ρw,zk . Writing the mth element of

Y as Ym, we have:

||Σ|| ≤
√
||Σ||1||Σ||∞ = ||Σ||∞

= max
1≤m≤m′

∑
1≤m≤m′

|E[Y ′
kYk′ ]|

= O(J/d),

where the inequality in the first line is due to Hölder’s inequality, and ||Σ||1 = ||Σ||∞ since they are

equal to the maximum of the column and row sums (respectively) of the absolute values of elements

in Σ, which are equal since Σ is symmetric. This implies that as d → ∞ and J remaining finite or

tending to infinity at a rate slower than log(d), we have, for any t > 0:

Pr(||E[Y |A′Y ]− (µY +Σ1/2PΣ1/2AΣ
−1/2(Y − µY ))|| > t) ≤ Pr(||Σ||1/2||(E[Z|B′Z]−BB′Z)|| > t)

(for sufficiently large d) ≤ Pr(||(E[Z|B′Z]−BB′Z)|| > t)

≤ 1

t
d−τξ1 +

γ1
1− τ

J

3ξ1log(d)

which tends to zero, as desired.

□

B Calculations for Empirical Applications

B.1 Chevalier and Goolsbee (2009)

The parameter of interest is λ, which is given by the ratio of the coefficient on the interaction between

price and revision probability and the coefficient on price (multiplied by −1). First, using the theory

developed in this paper, I will derive conditions under which OVB can fully explain the finding that

consumers are forward looking when in fact consumers are fully myopic (λ = 0). Since the paper

does not provide information about the covariance between the endogenous variable and the control

variables (as well as the covariances between the control variables), some approximations have to be

made in the calculation below.
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Consider the normalized “composite” control variable:

z̃ij ≡
L∑

k=1

δkz
k
ij ,

and normalize it so that:

z̃ij ≡
∑L

k=1 δ̂kz
k
ij ,√

V ar
(∑L

k=1 δ̂kz
k
ij

)
,

.

If we replace the controls in the estimation equation with z̃ij , the coefficient on z̃ will be
√
V ar

(∑L
k=1 δ̂kz

k
ij

)
,

which is 0.31 if we ignore the correlations between the zkij ’s (which are not given in the paper).

If we also normalize the coefficients on the variable of interest and scaling variable, we obtain

β̂ ≥ 1.13, α̂ ≈ −1.28. Assuming that the true value of α is negative (i.e., price elasticity of de-

mand is negative), the test of whether consumers are fully myopic reduces to checking whether:

0 ∈
[
β̂ −

∣∣∣∣M√V ar(ẑ∗ij)

(√
R2

max − ρ2x,z∗
ij

) ∣∣∣∣, β̂ +

∣∣∣∣M√V ar(ẑ∗ij)

(√
R2

max − ρ2x,z∗
ij

) ∣∣∣∣]. Since we do

not have information on ρ2x,z∗
ij

, we simply assume that it is zero in our calculations.

B.2 Cheng (2023)

Quality is quantified in terms of risk-adjusted mortality rate (in percent), and demand for quality

is measured in terms of the marginal rate of substitution (MRS) of quality with respect to distance

(in miles). As a benchmark for the demand estimates from hospital settings, we use the estimate of

1.8 from Chandra, Finkelstein, Sacarny, and Syverson (2016). Estimating demand for nursing home

quality in California between 2008–2010 using a conditional logit model,10 Column 1 of Appendix

Table 2 shows that when we do not include any controls, the estimated MRS is:

MRS = − 0.020/0.015

−1.249/3.882
· 0.01 = 0.041,

which is more than 40 times smaller than 1.8, and column 2 shows that the estimate remains largely

unchanged if we include controls for RN, LPN, and CNA staffing levels, as well as number of complaint

deficiencies that nursing home cited for, and whether the nursing home is for-profit and/or part of a

chain. Column 3 verifies that the estimates are unchanged when we use the “composite” control variable
10Cheng (2022) considers a more complicated structural demand model which takes unobserved choice set constraints

due to selective admissions practices by nursing homes into account. However, for simplicity, we will ignore these choice
set constraints in our application here.
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z̃ij which is given by the weighted sum of the original controls with utility weights (normalized to have

unit variance).

C Closed Form Expressions for Imin and Imax in Proposition 2

For Imin, consider the candidate values:

ρx,zK =

√√√√R2
x,max −

K−1∑
l=1

ρ̂2
x,zl ,

ρw,zK = −sgn

β̂ − (M ·
K−1∑
l=1

δ̂l)

√√√√R2
x,max −

K−1∑
l=1

ρ̂2
x,zl

√√√√R2
x,max −

K−1∑
l=1

ρ̂2
x,zl

 .

If this pair of values satisfy the first constraint, then substituting them into objective function gives

us Imin. Similarly, flipping the signs of these two values, if the first constraint is satisfied, then they

are the solution to the maximization problem or Imax.

Now, suppose that that the first inequality is not satisfied with these values. This implies that it

holds with equality since the function on the left hand side is continuous (and thus the inequality still

holds if we perturb ρx,zK or ρw,zK in the direction that increases their magnitude). Now, solving ρx,zK

in terms of ρw,zK in this equation, we obtain:

(
1−

K−1∑
l=1

ρ̂2w,zl

)
ρ2x,zK +

(
1−

K−1∑
l=1

ρ̂2x,zl

)
ρ2w,zK + 2

(
−ρ̂x,w +

K−1∑
l=1

ρ̂x,zl ρ̂w,zl

)
ρx,zKρw,zK = CK−1,

ρx,zK = Q(ρw,zK ) ≡
−B ±

√
B2 − 4AC(ρw,zK )

2A
, (18)

where:

A ≡ 1−
K−1∑
l=1

ρ̂2w,zl ,

B(ρw,zK ) ≡ 2

(
−ρ̂x,w +

K−1∑
l=1

ρ̂x,zl ρ̂w,zl

)
ρw,zK ,

C(ρw,zK ) ≡

(
1−

K−1∑
l=1

ρ̂2x,zl

)
ρ2w,zK − CK−1.
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Substituting this into the objective function and simplifying, we obtain:

β̂ − (M ·
∑K−1

l=1 δ̂l)ρx,zK

α̂− (M ·
∑K−1

l=1 δ̂l)ρw,zK

=

β̂ − (M ·
∑K−1

l=1 δ̂l)

(
−B(ρw,zK )±

√
B(ρw,zK )2 − 4AC(ρw,zK )

2A

)
α̂− (M ·

∑K−1
l=1 δ̂l)ρw,zK

=
2Aβ̂ − (M ·

∑K−1
l=1 δ̂l)

(
−B(ρw,zK )±

√
B(ρw,zK )2 − 4AC(ρw,zK )

)
2A
(
α̂− (M ·

∑K−1
l=1 δ̂l)ρw,zK

) .

The first-order conditions are given by:

−(FH(ρw,zK ))

[
G± 1

2
E(ρw,zK )−1/2

(
2G2ρw,zK − 8A

(
1−

∑K−1
l=1 ρ̂2x,zl

)
ρw,zK

)]
H(ρw,zK )2

−

[
2Aβ̂ − F

(
−B(ρw,zK )± E(ρw,zK )1/2

)]
(−2AF )

H(ρw,zK )2
= 0,

where:

E(ρw,zK ) ≡ B(ρw,zK )2 − 4AC(ρw,zK ),

F ≡ M ·
K−1∑
l=1

δ̂l,

G ≡ 2

(
ρ̂x,w −

K−1∑
l=1

ρ̂x,zl ρ̂w,zl

)
,

H(ρw,zK ) ≡ 2A

(
α̂− (M ·

K−1∑
l=1

δ̂l)ρw,zK

)
.

From this, we obtain:

G ± E(ρw,zK )
−1/2

(
G

2 − 4A

(
1 −

K−1∑
l=1

ρ̂
2

x,zl

))
ρw,zK =

[
2Aβ̂ − F

(
−B(ρw,zK ) ± E(ρw,zK )1/2

)]
2A

H(ρw,zK )

=⇒
[
G ± E(ρw,zK )

−1/2

(
G

2 − 4A

(
1 −

K−1∑
l=1

ρ̂
2

x,zl

))
ρw,zK

](
α̂ − Fρw,zK

)
= 2Aβ̂ + FB(ρw,zK ) ∓ E(ρw,zK )

1/2

=⇒
[
GE(ρw,zK )

1/2 ±
(
G

2 − 4A

(
1 −

K−1∑
l=1

ρ̂
2

x,zl

))
ρw,zK

](
α̂ − Fρw,zK

)
=
(
2Aβ̂ + FB(ρw,zK )

)
E(ρw,zK )

1/2∓E(ρw,zK )

=⇒ ±
[(

α̂ − Fρw,zK

)(
G

2 − 4A

(
1 −

K−1∑
l=1

ρ̂
2

x,zl

))
ρw,zK + E(ρw,zK )

]
=
[
2Aβ̂ + FB(ρw,zK ) −

(
α̂ − Fρw,zK

)
G
]
E(ρw,zK )

1/2

=⇒
[(

α̂ − Fρw,zK

)(
G

2 − 4A

(
1 −

K−1∑
l=1

ρ̂
2

x,zl

))
ρw,zK + E(ρw,zK )

]2

=
[
2Aβ̂ + FB(ρw,zK ) −

(
α̂ − Fρw,zK

)
G
]2

E(ρw,zK ).
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Given that B(ρw,zK ) is linear in ρw,zK , E(ρw,zK ) is quadratic in ρw,zK , this is a quartic equation. In
particular, we have:

(α̂ − Fρ
w,zK

)G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
w,zK

+ E(ρ
w,zK

)

2 =

[
2Aβ̂ + FB(ρ

w,zK
) −

(
α̂ − Fρ

w,zK

)
G

]2
E(ρ

w,zK
).

=⇒ E(ρ
w,zK

)
2

+ 2

(
α̂ − Fρ

w,zK

)G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
w,zK

+

(
α̂ − Fρ

w,zK

)2 G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

2

ρ
2
w,zK

= (2Aβ̂ − α̂G)
2
E(ρ

w,zK
).

=⇒
[
B(ρ

w,zK
)
2 − 4AC(ρ

w,zK
)

]
2
+

+

(
α̂ − Fρ

w,zK

)2 G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

2

ρ
2
w,zK

− (2Aβ̂ − α̂G)
2
[
B(ρ

w,zK
)
2 − 4AC(ρ

w,zK
)

]

+ 2

(
α̂ − Fρ

w,zK

)G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
w,zK

= 0

=⇒


G2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
2
w,zK

+ 4ACK−1


2

+

+

(
α̂
2 − 2α̂Fρ

w,zK
+ F

2
ρ
2
w,zK

)G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

2

ρ
2
w,zK

− (2Aβ̂ − α̂G)
2


G2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
2
w,zK

+ 4ACK−1


+ 2

(
α̂ − Fρ

w,zK

)G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
w,zK

= 0

=⇒

G2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

2 ρ
4
w,zK

+ 8ACK−1

G2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
2
w,zK

+ 16A
2
C

2
K−1+

+ α̂
2

G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

2

ρ
2
w,zK

− 2α̂F

G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

2

ρ
3
w,zK

+ F
2

G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

2

ρ
4
w,zK

− (2Aβ̂ − α̂G)
2

G2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
2
w,zK

− (2Aβ̂ − α̂G)
2
4ACK−1

+ 2α̂

G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
w,zK

− F

G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
2
w,zK

= 0
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=⇒

G2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

2 ρ
4
w,zK

+ 8ACK−1

G2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
2
w,zK

+ 16A
2
C

2
K−1+

+ α̂
2

G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

2

ρ
2
w,zK

− 2α̂F

G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

2

ρ
3
w,zK

+ F
2

G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

2

ρ
4
w,zK

− (2Aβ̂ − α̂G)
2

G2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
2
w,zK

− (2Aβ̂ − α̂G)
2
4ACK−1

+ 2α̂

G2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
w,zK

− F

G
2 − 4A

1 −
K−1∑
l=1

ρ̂
2
x,zl

 ρ
2
w,zK

= 0

so we can write the quartic equation as:

aρ4w,zK + bρ3w,zK + cρ2w,zK + dρw,zK + e = 0,

where:

a ≡ (1 + F 2)

[
G2 − 4A

(
1−

K−1∑
l=1

ρ̂2x,zl

)]2
,

b ≡ −2α̂F

[
G2 − 4A

(
1−

K−1∑
l=1

ρ̂2x,zl

)]2
,

c ≡

{
8ACK−1 + α̂2

[
G2 − 4A

(
1−

K−1∑
l=1

ρ̂2x,zl

)]
− (2Aβ̂ − α̂G)2 − F

}[
G2 − 4A

(
1−

K−1∑
l=1

ρ̂2x,zl

)]

d ≡ 2α̂

[
G2 − 4A

(
1−

K−1∑
l=1

ρ̂2x,zl

)]

e ≡ 4ACK−1

(
4ACK−1 − (2Aβ̂ − α̂G)2

)

Denoting:

p ≡ 2c3 − 9bcd+ 27ad2 + 26b2e− 72ace,

q ≡ c2 − 3bd+ 12ae,

we can write the roots as:
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Finally, denoting:

ρ∗x,zK ≡

√√√√R2
x,max −

K−1∑
l=1

ρ̂2
x,zl ,

ρ∗w,zK ≡ −sgn

β̂ − (M ·
K−1∑
l=1

δ̂l)

√√√√R2
x,max −

K−1∑
l=1

ρ̂2
x,zl


√√√√R2

x,max −
K−1∑
l=1

ρ̂2
x,zl ,

h(ρx,zK , ρw,zK ) ≡

(
1−

K−1∑
l=1

ρ̂2w,zl

)
ρ2x,zK+

(
1−

K−1∑
l=1

ρ̂2x,zl

)
ρ2w,zK+2

(
−ρ̂x,w +

K−1∑
l=1

ρ̂x,zl ρ̂w,zl

)
ρx,zKρw,zK ,

(ρ∗,min
x,zK , ρ∗,min

x,zK ) ≡ min

 β̂ − (M ·
∑K−1

l=1 δ̂l)Q(ρ
(m)

w,zK )

α̂− (M ·
∑K−1

l=1 δ̂l)ρ
(m)

w,zK


(Q(ρ

(m)

w,zK
),ρ

(m)

w,zK
)∈S

(ρ∗,max
x,zK , ρ∗,max

x,zK ) ≡ max

 β̂ − (M ·
∑K−1

l=1 δ̂l)Q(ρ
(m)

w,zK )

α̂− (M ·
∑K−1

l=1 δ̂l)ρ
(m)

w,zK


(Q(ρ

(m)

w,zK
),ρ

(m)

w,zK
)∈S

S ≡

{
(r1, r2)|r1 = Q(r2), (r1, r2) ∈ R2, r21 ≤ R2

x,max −
K−1∑
l=1

ρ̂2x,zl , r
2
2 ≤ R2

w,max −
K−1∑
l=1

ρ̂2w,zl

}
,

where Q(·) is given by equation (18), we can write the lower and upper bounds as:

Imin =
β̂ − (M ·

∑K−1
l=1 δ̂l)ρ

∗,min
x,zK

α̂− (M ·
∑K−1

l=1 δ̂l)ρ
∗,min
w,zK

, Imax =
β̂ − (M ·

∑K−1
l=1 δ̂l)ρ

∗,max
x,zK

α̂− (M ·
∑K−1

l=1 δ̂l)ρ
∗,max
w,zK

,

where:

(ρ∗,min
x,zK , ρ∗,min

x,zK ) =


(ρ∗x,zK , ρ∗w,zK ) if h(ρ∗x,zK , ρ∗w,zK ) ≤ CK−1

(ρmin,quartic
x,zK , ρmin,quartic

w,zK ) otherwise

(ρ∗,max
x,zK , ρ∗,max

x,zK ) =


(−ρ∗x,zK ,−ρ∗w,zK ) if h(−ρ∗x,zK ,−ρ∗w,zK ) ≤ CK−1

(ρmax,quartic
x,zK , ρmax,quartic

w,zK ) otherwise.
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Table 2: Conditional Logit Estimates of Nursing Home Residents’ Demand for Quality

(1) (2) (3)
Resident Preferences
Quality (s.d.) 0.020*** 0.018*** 0.018***

(0.003) (0.003) (0.003)
Distance to Nursing Home (s.d.) -1.249*** -1.250*** -1.250***

(0.003) (0.004) (0.004)
RN Hours Per Resident-Day 0.563***

(0.007)
LPN Hours per Resident-Day 0.386***

(0.007)
CNA Hours Per Resident-Day -0.250***

(0.003)
Deficiencies 0.011***

(0.001)
Chain 0.254***

(0.006)
For-Profit 0.150***

(0.010)
Utility Index for Controls (s.d.) 0.319***

(0.003)

Number of Observations 7,778,104 7,780,646 7,780,646

Notes: This table shows conditional logit estimates of nursing home residents' demand for quality. 
Standard deviation of quality and distance are 0.015 and 3.882 respectively. Standard errors in 
parentheses.
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